Skip to main content
Log in

Synthesis of Triarylantimony(V) Compounds with Salicylic and Acetylsalicylic Acids

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The reactions of triarylantimony with t-BuOOH and salicylic/acetylsalicylic acids (1 : 1 : 2) afforded triarylantimony(V) derivatives: pTol3Sb(O2CC6H4-2-OH)2 (80% yield), Ph3Sb(O2CC6H4-2-OH)2 (38%), Ph3Sb(O2CC6H4-2-OAc)2 (82%), (Ph3SbO2CC6H42OH)2O (39%). The structures of the obtained compounds were compared using the structural parameter τ (X-ray diffraction data) and the differences between νas(COO) and νs(COO) (IR spectroscopy data). For all the synthesized compounds, the antimony atom was found to have intermediate coordination between trigonal bipyramidal and tetragonal pyramidal and to be additionally coordinated to the carbonyl oxygen atoms. The obtained triarylantimony disalicylates at room temperature react quantitatively with aqueous solution of NaOH by means of the salicylate groups elimination. Under similar conditions, Ph3Sb(O2CC6H4-2-OAc)2 eliminates acetylsalicylate groups, which undergo further hydrolysis to salicylate groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Scheme
Scheme
Scheme

REFERENCES

  1. Yasuike, S., Qin, W., Sagawara, Y., and Kurita, J., Tetrahedron Lett., 2007, vol. 48, p. 721. https://doi.org/10.1016/j.tetlet.2006.10.163

    Article  CAS  Google Scholar 

  2. Qin, W., Yasuike, S., and Kakusawa, N., J. Organomet. Chem., 2008, vol. 693, p. 109. https://doi.org/10.1016/j.jorganchem.2007.10.030

  3. Wang, X., Qin, W., Kakusawa, N., Yasuike, S., and Kurita, J., Tetrahedron Lett., 2009, vol. 50, no. 46, p. 6293. https://doi.org/10.1016/j.tetlet.2009.08.113

    Article  CAS  Google Scholar 

  4. Gushchin, A.V., Maleeva, A.I., Vakhitov, V.R., Andreev, P.V., and Somov, N.V., Russ. J. Gen. Chem., 2023, vol. 93, no. 2, p. 2. https://doi.org/10.1134/S1070363223020093

    Article  Google Scholar 

  5. Silvestru, С., Haiduc, I., Tiekink, E.R.T., De Vos, D., Biesemans, M., Willem, R., and Gielen, M., Appl. Organomet. Chem., 1995, vol. 9, p. 597. https://doi.org/10.1002/aoc.590090715

    Article  CAS  Google Scholar 

  6. Iftikhar, T., Rauf, M.K., and Sarwaretal, S., J. Organomet. Chem., 2017, vol. 851, p. 89. https://doi.org/10.1016/j.jorganchem.2017.09.002

  7. Tiekink, E.R.T., Crit. Rev. Oncol. Hematol., 2002, vol. 42, p. 217. https://doi.org/10.1016/S1040-8428(01)00217-7

    Article  PubMed  Google Scholar 

  8. Islam, A., Rodrigues, B.L., and Marzano, I.M., Eur. J. Med. Chem., 2016, vol. 109, p. 254. https://doi.org/10.1016/j.ejmech.2016.01.003

  9. Gerasimchuk, N., Pinks, K., Salpadoru, T., Cotton, K., Michka, O., Patrauchan, M.A., and Wozniak, K.L., Molecules, 2022, vol. 27, p. 7171. https://doi.org/10.3390/molecules27217171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Islam, A., Da Silva, J.G., and Berbetetal, F.M., Molecules, 2014, vol. 19, no. 5, p. 6009. https://doi.org/10.3390/molecules19056009

  11. Ali, M.I., Rauf, M.K., Badshah, A., Kumar, I., Forsyth, C.M., Junk, P.C., Kedzierski, L., and Andrews, P.C., Dalton Trans., 2013, vol. 42, no. 48, p. 16733. https://doi.org/10.1039/c3dt51382c

  12. Artem’eva, E.V., Efremov, A.N., Sharunina, O.K., Sharutin, V.V., Duffin, R.N., Muniganti, S., and Andrews, P.C., J. Inorg. Biochem., 2022, vol. 234, p. 111864. https://doi.org/10.1016/j.jinorgbio.2022.111864

  13. Artem’eva, E.V., Duffin, R.N., Munuganti, S., Efremov, A.N., Andrews, P.C., Sharutina, O.K., and Sharutin, V.V., Polyhedron, 2022, vol. 213, p. 115627. https://doi.org/10.1016/j.poly.2021.115633

  14. Duffin, R.N., Blair, V.L., Kedzierski, L., and Andrews, P.C., J. Inorg. Biochem., 2018, vol. 189, p. 151. https://doi.org/10.1016/j.jinorgbio.2018.08.015

  15. Duffin, R.N., Blair, V.L., Kedzierski, L., and Andrews, P.C., Dalton Trans., 2018, vol. 47, p. 971. https://doi.org/10.1039/c7dt04171c

    Article  CAS  PubMed  Google Scholar 

  16. Duffin, R.N., Blair, V.L., Kedzierski, L., and Andrews, P.C., J. Inorg. Biochem., 2020, vol. 203, p. 110932. https://doi.org/10.1016/j.jinorgbio.2019.110932

    Article  CAS  PubMed  Google Scholar 

  17. Wijnant, G.-J., Dumetz, F., Dirkx, L., Bulte, D., Cuypers, B., van Bocxlaer, K., and Hendrickx, S., Front. Trop. Dis., 2022, vol. 3, p. 1. https://doi.org/10.3389/fitd.2022.837460

    Article  Google Scholar 

  18. Barucki, H., Coles, S.J., Costello, J.F., Gelbrich, T., and Hursthouse, M.B., J. Chem. Soc., 2000, vol. 14, p. 2319. https://doi.org/10.1039/b002337j

  19. Yadav, R.N.P., Global J. Sci. Front. Res., 2015, vol. 15, no. 3, p. 35.

  20. Sharutin, V.V., Pakusina, A.P., Sharutina, O.K., Nasonova, N.V., Gerasimenko, A.V., and Pushilin, M.A., Chem. Computat. Simul. Butlerov Commun., 2002, vol. 3, no. 11, p. 13.

  21. Polychronis, N.M., Banti, C.N., Raptopoulou, C.P., Psycharis, V., Kourkoumelis, N., and Hadjikakou, S.K., Inorg. Chim. Acta, 2019, vol. 489, p. 39. https://doi.org/10.1016/j.ica.2019.02.004

    Article  CAS  Google Scholar 

  22. Sharutin, V.V., Sharutina, O.K., Efremov, A.N., and Artem’eva, E.V., Russ. J. Gen. Chem., 2019, vol. 89, no. 1, p. 76. https://doi.org/10.1134/S1070363219010146

    Article  CAS  Google Scholar 

  23. Sharutin, V.V., Sharutina, O.K., Efremov, A.N., and Artem’eva, E.V., Russ. J. Inorg. Chem., 2019, vol. 64, no. 10, p. 1229. https://doi.org/10.1134/S0036023619100139

    Article  CAS  Google Scholar 

  24. Addison, A.W., Rao, T.N., Reedijk, J., van Rijn, J., and Verschoor, G.C., J. Chem. Soc., Dalton Trans., 1984, no. 7, p. 1349. https://doi.org/10.1039/DT9840001349

  25. Batsanov, S.S., Inorg. Mater., 2001, vol. 37, no. 9, p. 871. https://doi.org/10.1023/A:1011625728803

  26. Hasan, T., Singh, P.K., Raj, P., Singhal, K., and Misra, N., Eur. J. Chem., 2008, vol. 5, no. 4, p. 723. https://doi.org/10.1155/2008/351845

  27. Spectral Database for Organic Compounds, Japan, 1997.

  28. Elkin, M.D., Smirnov, V.V., Alykova, O.M., Alykova, A.F., and Zavestovskaya, I.N., J. Phys.: Conf. Ser., 2020, vol. 1439. https://doi.org/10.1088/17426596/1439/1/012037

Download references

ACKNOWLEDGMENTS

Authors are grateful to Yu.B. Malysheva (Lobachevsky State University of Nizhny Novgorod) for recording NMR spectra. The study was carried out on the equipment of the Collective Usage Center “New Materials and Resource-Saving Technologies” of the Lobachevsky State University of Nizhny Novgorod.

Funding

This study was financially supported by the Ministry of Education and Science of the Russian Federation within the framework of the basic part of the state assignment (project FSWR-2023-0025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Gushchin.

Ethics declarations

The authors declare no conflict of interest.

Additional information

To the 35th Anniversary of the founding of the G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gushchin, A.V., Sokolova, N.V., Levina, V.V. et al. Synthesis of Triarylantimony(V) Compounds with Salicylic and Acetylsalicylic Acids. Russ J Gen Chem 93 (Suppl 3), S805–S813 (2023). https://doi.org/10.1134/S1070363223160193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223160193

Keywords:

Navigation