Skip to main content
Log in

Conifer Bark as a Precursor of 2D Graphene Structures: Synthesis and Application

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The bark of coniferous trees was carbonized under the conditions of the high-temperature self-propagation synthesis process. It was shown by IR and Raman spectroscopy, X-ray crystallography, and electron microscopy that the carbonization product compares with the few-layer graphene, a 2D nanocarbon which a promising candidate for wide-scale application. Evidence was obtained in favor of the potential use of graphene nanoplates as a modifier for vulcanized butadiene-styrene rubbers. It was shown that modification increased such practically important parameters of vulcanized rubbers as tear and multiple tensile resistance by 35 and 237%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Ministry of Natural Resources of Russia. On the State and Protection of the Environment of the Russian Federation in 2020. StateDonation Report; Ministry of Natural Resources of Russia, Moscow, Russia, 2021, pp. 245–318.

  2. Kulikova, Y., Sukhikh, S., Babich, O., Yuliya, M., Krasnovskikh, M., and Noskova, S. Plants (Basel), 2022, vol. 11, no. 12, p. 1549. https://doi.org/10.3390/plants11121549

  3. Svoykin, F., Birman, A., Bacherikov, I., Mater, O., and Bozhbov, V., IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 817, p. 012033.

    Article  Google Scholar 

  4. Sen, U., Esteves, B., and Pereira, H., Energies, 2023, vol. 16, p. 4848. https://doi.org/10.3390/en1613484

    Article  CAS  Google Scholar 

  5. Feng, S., Cheng, S., Yuan, Z., Leitch, M., and Xu, C. Renew. Sust. Energ. Rev., 2013, vol. 26, pp. 560–578.

    Article  CAS  Google Scholar 

  6. Ivanov, I.P., Veprikova, E.V., and Chesnokov, N.V., J. Sib. Fed. Univ. Chem., 2022, vol. 15, no. 2, pp. 265–274. https://doi.org/10.17516/1998-2836-0291

  7. Pasztory, Z., Mohacsine, l.R., Gorbacheva, G., and Borcsoka, Z., BioResources, 2016, vol. 11, no. 3, pp. 7859–7888.

    Article  Google Scholar 

  8. Morozov, A.S., Bessonov, I.V., Nuzhdina, A.V., and Pisarev, V.M., Gen. Reanimatol., 2016, vol. 12, no. 6, pp. 82–107.

    Article  Google Scholar 

  9. Voznyakovskii, A.P; Vozniakovskii, A.A., and Kidalov, S.V., Nanomaterials, 2022, vol. 12, no. 4, p. 657. https://doi.org/10.3390/nano12040657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Voznyakovskii, A.P., Karmanov, A.P., Neverovskaya, A.Y. Voznyakovskii, A.A., Kocheva, L.S., and Kidalov, S.V. Russ. J. Bioorg. Chem., 2021, vol. 47, no. 7, pp. 1381–1388. https://doi.org/10.1134/S1068162021070165

    Article  CAS  Google Scholar 

  11. Ivanovskii, A.L., Russ. Chem. Rev., 2012, vol. 81, no. 7, pp. 571–605. https://doi.org/10.1070/RC2012v081n07ABEH004302

    Article  ADS  CAS  Google Scholar 

  12. Physics and Applications of Graphene: Experiments, Mikhailov, S., Ed., 2011. InTech Janeza Trdine 9, 51000 Rijeka, Croatia.

  13. Bytesnikova, Z., Adam, V., and Richtera, L.. Food Control, 2021, vol. 121, no. 9, p. 107611. https://doi.org/10.1016/j.foodcont.2020.107611

    Article  CAS  Google Scholar 

  14. Fradinho, D.M., Neto, C.P., Evtuguin, D., Jorge, F.C., Irle, M.A., Gil, M.H., and Pedrosa de Jesus, J., Ind. Crops Products, 2002, vol. 16, pp. 23–32. https://doi.org/10.1016/S0926-6690(02)00004-3

    Article  CAS  Google Scholar 

  15. Deineko, I.P., Deineko, I.V., and Belov, L.P., Khim. Rast. Syr’ya, 2007, no. 1, pp. 19–24.

    Google Scholar 

  16. Landers, J., Gor, G.Yu., and Neimark, A.V., Colloids Surf. A: Physicochem. Eng. Asp., 2013, vol. 437, pp. 3–32. https://doi.org/10.1016/j.colsurfa.2013.01.007

  17. Sharutin, V.V. and Senchurin, V.S., Reaktsii organicheskikh soedinenii elementov (Reactions of Organoelement Compounds), Blagoveshchensk: Blagoveshchensk Gos. Ped. Univ., 2008.

  18. Voznyakovskii, A.P., Shumilov, F.A., Ibatullina, A.Kh., and Shugalei, I.V., Russ. J. Gen. Chem., 2012, vol. 82, no. 13, pp. 2253–2255. https://doi.org/10.1134/S1070363212130117

    Article  CAS  Google Scholar 

  19. Scardaci, V. and Compagnini, G., J. Carbon Res., 2021, no. 7, p. 48. https://doi.org/10.3390/c7020048

    Article  CAS  Google Scholar 

  20. Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., Jiricek, P., and Bieloshapka, I., J. Electron Spectrosc. Rel. Phenom., 2014, vol. 195, pp. 145–154.

  21. Johra, F.T., Lee, J.-W., and Jung, W.-G., J. Ind. Eng. Chem., 2014, vol. 20, pp. 2883–2887.

    Article  CAS  Google Scholar 

  22. Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., and Ruoff, R.S., Carbon, 2007, vol. 45, no. 7, pp. 1558–1565.

    Article  CAS  Google Scholar 

  23. Rockne, K.J., Taghon, G.L., and Kosson, D.S., Chemosphere, 2000, vol. 41, pp. 1125–1135.

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Paul, D.R. and Robeson, L.M., Polymer, 2008, vol. 49, pp. 3187–3204.

    Article  CAS  Google Scholar 

  25. Wang, Y., Li, Zh., Wang, J., Li, J., and Lin, Y., Trends Biotechnol., 2011, vol. 29, no. 5, pp. 205–212.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Soota , M., Int. J. Aerosp. Mech. Eng., 2020, vol. 7, no. 1, pp. 10–13.

    Google Scholar 

  27. Mochalin, V.N. and Gogotsi, Y., Diamond Rel.Mater., 2015, vol. 58, pp. 161–171. https://doi.org/10.1016/j.diamond.2015.07.003

  28. Kim, H., Abdala, A.A., and Macosko, C.W., Macromolecules, 2010, vol. 43, no. 16, pp. 6515–6530.

    Article  ADS  CAS  Google Scholar 

  29. Mechanical Properties of Polymers based on Nanostructure and Morphology, Michler, G.H. and BaltáCalleja, F.J., Eds, Boca Raton: CRC, 2005.

  30. Fabish, J. and Schleifer, D.E., Carbon, 1984, vol. 22, no. 1, pp. 19–38. https://doi.org/10.1016/S0008-6223(98)00323-6

    Article  CAS  Google Scholar 

  31. Dannenberg, E.M., Rubber Chem. Technol., 1986, vol. 59, p. 512.

    Article  CAS  Google Scholar 

  32. Charisiadis, P., Kontogianni, V.G., Tsiafoulis, C.G., Tzakos, A.G., Siskos, M., and Gerothanassis, I.P., Molecules, 2014, vol. 19, no. 9, pp. 13643–3682. https://doi.org/10.3390/molecules190913643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yon, J., Liu, F., Morán, J., and Fuentes, A., Proc. Combust. Inst., 2019, vol. 37, no. 1, pp. 1151–1159.

    Article  CAS  Google Scholar 

  34. Dedrie, M., Jacquet, N., Bombeck, P.-L., Hébert, J., and Richel, A., Ind. Crops Products, 2015, vol. 70, no. 8, pp. 316–321. https://doi.org/10.1016/j.indcrop.2015.03.071

    Article  CAS  Google Scholar 

  35. Levi, A.B., Kvider, D.A., Karrassa, K., and Kunts, K., RF Patent 2515379, C2 MPK C05C 1/02.

Download references

Funding

This work was supported by the Russian Science Foundation grant No. 23-79-10254.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Neverovskaya.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neverovskaya, A.Y., Voznyakovskii, A.P., Krupskaya, L.T. et al. Conifer Bark as a Precursor of 2D Graphene Structures: Synthesis and Application. Russ J Gen Chem 93, 3474–3482 (2023). https://doi.org/10.1134/S1070363223130303

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223130303

Keywords:

Navigation