Skip to main content
Log in

Development of “Ink” for Extrusion Methods of 3D Printing with Viscous Materials

  • Selected articles originally published in Russian in Rossiiskii Khimicheskii Zhurnal (Russian Chemistry Journal)
  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

3D printing represents a versatile approach for fabricating products with desired geometries. Of particular interest are extrusion methods of 3D printing that utilize “inks” consisting of viscous materials. The utilization of such “inks” enables the printing process to be carried out at low temperatures, with compositional variations, and facilitates the production of products with highly porous structures. Products printed using viscous materials hold great promise in the fields of medicine, pharmaceuticals, and the chemical industry. This paper outlines the stages involved in developing “inks” based on the sodium alginate biopolymer. Complex rheological studies were conducted on these “inks,” and two methods of 3D printing with viscous materials were implemented: direct gel printing and printing using a heterophase system. Two compositions of “inks” were devised, one based on pure sodium alginate and the other based on partially crosslinked sodium alginate. The viscosity of the sodium alginate-based “ink” ranged from 0.8 to 118.6 Pa s for polymer concentrations of 2–9 wt %. Materials with a sodium alginate concentration of 2 wt % exhibited the most pronounced thixotropic properties. It was demonstrated that sodium alginate-based “ink” can be effectively employed for 3D printing using a heterophase system, where the system serves as a supportive volume, preventing the printed product from spreading and enabling the formation of a 3D structure. In the case of partially crosslinked sodium alginate-based “ink” (2 wt %), the addition of a crosslinking agent resulted in a viscosity range of 1.8 to 1032.4 Pa·s for calcium chloride concentrations ranging from 0.05 to 0.3 wt %. This crosslinking agent allowed for an increase in viscosity, facilitating direct gel 3D printing without the need for a heterophase system. All the developed “inks” exhibited a pseudoplastic flow behavior, characterized by a decrease in viscosity with an increase in shear rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Abdulhameed, O., Al-Ahmari, A., Ameen, W., and Mian, S.H., Adv. Mech. Eng., 2019, vol. 11, no. 2. https://doi.org/10.1177/1687814018822880

  2. Kantaros, A., Int. J. Mol. Sci., 2022, vol. 23, no. 23, p. 14621. https://doi.org/10.3390/IJMS232314621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shahzad, A. and Lazoglu, I., Compos. Part B: Eng., 2021, vol. 225, pp. 109–149. https://doi.org/10.1016/J.COMPOSITESB.2021.109249

    Article  Google Scholar 

  4. Kirchmajer, D.M., Gorkin, R., In Het Panhuis, M., J. Mater. Chem. B., 2015, vol. 3, no. 20, pp. 4105–4117. https://doi.org/10.1039/C5TB00393H

    Article  CAS  PubMed  Google Scholar 

  5. Zulfikri Taning, A., Lee, S., Woo, S., Somalu, M.R., Muchtar, A., Brandon, N.P., Bapat, S., Giehl, C., Kohsakowski, S., Paxton, N., Smolan, W., Böck, T., Melchels, F., Groll, J., and Jungst, T., Biofabrication, 2017, vol. 9, no. 4, pp. 44–78. https://doi.org/10.1088/1758-5090/AA8DD8

    Article  Google Scholar 

  6. Shiwarski, D.J., Hudson, A.R., Tashman, J.W., and Feinberg, A.W., Apl. Bioeng., 2021, vol. 5, no. 1, p. 10904. https://doi.org/10.1063/5.0032777

    Article  Google Scholar 

  7. Hinton, T.J., Jallerat, Q., Palchesko, R.N., Park, J.H., Grodzicki, M.S., Shue, H.J., Ramadan, M.H., Hudson, A.R., and Feinberg, A.W., Sci. Adv., 2015, vol. 1, no. 9, pp. 75–94. https://doi.org/10.1126/SCIADV.1500758

    Article  Google Scholar 

  8. del-Mazo-Barbara, L. and Ginebra, M.P., J. Eur. Ceram. Soc., 2021, vol. 41, no. 16, pp. 18–33. https://doi.org/10.1016/J.JEURCERAMSOC.2021.08.031

    Article  CAS  Google Scholar 

  9. Aronsson, C., Jury, M., Naeimipour, S., Boroojeni, F.R., Christoffersson, J., Lifwergren, P., Mandenius, C.F., Selegård, R., and Aili, D., Biofabrication, 2020, vol. 12, no. 3, p. 035031. https://doi.org/10.1088/1758-5090/AB9490

    Article  CAS  Google Scholar 

  10. Bordoni, M., Karabulut, E., Kuzmenko, V., Fantini, V., Pansarasa, O., Cereda, C., and Gatenholm, P., Cells, 2020, vol. 9, no. 3, p. 682. https://doi.org/10.3390/CELLS9030682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bessler, N., Ogiermann, D., Buchholz, M.B., Santel, A., Heidenreich, J., Ahmmed, R., Zaehres, H., and Brand-Saberi, B., HardwareX, 2019, vol. 6. https://doi.org/10.1016/j.ohx.2019.e00069

  12. Ahmad Raus, R., Wan Nawawi, W.M.F., and Nasaruddin, R.R., Asian J. Pharm. Sci., 2021, vol. 16, no. 3, pp. 280–306. https://doi.org/10.1016/J.AJPS.2020.10.001

    Article  PubMed  Google Scholar 

  13. Gao, T., Gillispie, G.J., Copus, J.S., Kumar, A.P.R., Seol, Y.J., Atala, A., Yoo, J.J., and Lee, S.J., Biofabrication, 2018, vol. 10, no. 3, p. 034106. https://doi.org/10.1088/1758-5090/AACDC7

    Article  Google Scholar 

  14. Jungst, T., Smolan, W., Schacht, K., and Scheibel, T., Groll J. Chem. Rev., 2016, vol. 116, no. 3, pp. 1496–1539. https://doi.org/10.1021/ACS.CHEMREV.5B00303

    Article  CAS  PubMed  Google Scholar 

  15. Okisheva, M.K., Abramov, A.A., and Tsygankov, P.Y., Usp. Kim. Kim. Tekhnol., 2022, vol. 36, no. 2, pp. 88–90.

    Google Scholar 

  16. Tsygankov, P.Yu., Abramov, A.A., and Menshutina, N.V., Khim. Promt Segodnya, 2020, no. 6, pp. 52–57.

    Google Scholar 

  17. Melhem, M.R., Park, J., Knapp, L., Reinkensmeyer, L., Cvetkovic, C., Flewellyn, J., Lee, M.K., Jensen, T.W., Bashir, R., Kong, H., and Schook, L.B., ACS Biomater. Sci. Eng., 2017, vol. 3, no. 9, pp. 1980–1987. https://doi.org/10.1021/ACSBIOMATERIALS.6B00176

    Article  CAS  PubMed  Google Scholar 

  18. Koh, W.G., Revzin, A., and Pishko, M.V., Langmuir, 2002, vol. 18, no. 7, pp. 2459–2462. https://doi.org/10.1021/LA0115740

    Article  CAS  PubMed  Google Scholar 

  19. Kim, M.H., Lee, Y.W., Jung, W.K., Oh, J., and Nam, S.Y., J. Mech. Behav. Biomed. Mater., 2019, vol. 98, pp. 187–194. https://doi.org/10.1016/J.JMBBM.2019.06.014

    Article  CAS  PubMed  Google Scholar 

  20. Lindsay, C.D., Roth, J.G., LeSavage, B.L., and Heilshorn, S.C., Acta Biomater., 2019, vol. 95, pp. 225–235. https://doi.org/10.1016/J.ACTBIO.2019.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maloney, E., Clark, C., Sivakumar, H., Yoo, K., Aleman, J., Rajan, S.A.P., Forsythe, S., Mazzocchi, A., Laxton, A.W., Tatter, S.B., Strowd, R.E., Votanopoulos, K.I., and Skardal, A., Micromachines, 2020, vol. 11, no. 2, p. 208. https://doi.org/10.3390/MI11020208

    Article  PubMed  PubMed Central  Google Scholar 

  22. Menshutina, N., Abramov, A., Tsygankov, P., and Lovskaya, D., Gels, 2021, vol. 7, no. 3, p. 92. https://doi.org/10.3390/GELS7030092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out with the financial support of Mendeleev University of Chemical Technology of Russia within the framework of the “Priority-2030” strategic academic leadership program no. VIG_2022_006.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct thisparticular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Abramov.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramov, A.A., Okisheva, M.K., Tsygankov, P.Y. et al. Development of “Ink” for Extrusion Methods of 3D Printing with Viscous Materials. Russ J Gen Chem 93, 3264–3271 (2023). https://doi.org/10.1134/S1070363223120289

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223120289

Keywords:

Navigation