Skip to main content
Log in

Computer Simulation of Hydrodynamics and Mass Transfer of Supercritical Drying of Aerogels in Laboratory and Industrial Scale Apparatuses

  • Selected articles originally published in Russian in Rossiiskii Khimicheskii Zhurnal (Russian Chemistry Journal)
  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

This article presents the results of modeling the hydrodynamics and mass transfer of the supercritical drying process in apparatuses of various volumes. Calculations of hydrodynamics and mass transfer were carried out using the Ansys Fluent software package, exemplified with devices of laboratory and industrial volumes—2 and 70 L, respectively. The modeling aimed to predict the time of supercritical drying and the feasibility of scaling the process. Continuum mechanics principles were employed to model hydrodynamics and mass transfer, treating the multicomponent system as a viscous compressible fluid. The calculation took place in two areas: within a porous body and in the free volume of an apparatus of a certain scale. Additionally, a study was conducted on the hydrodynamics and mass transfer of the process in the presence of a divider, necessary to minimize the formation of stagnant zones in the apparatus. For optimization purposes, the divider calculation was performed separately from the apparatus. The data obtained were then used in subsequent calculations of the hydrodynamics and mass transfer of the process, employing a user-defined function (UDF) written in the C programming language. A preliminary study of the kinetics of supercritical drying in a 2-L apparatus was carried out to assess the possibility of using the proposed mathematical model for an industrial-level apparatus. The simulation demonstrated that the proposed model is capable of describing the process of supercritical drying in devices of various volumes. Furthermore, calculated curves of the kinetics of supercritical drying, profiles of the velocity distribution of supercritical carbon dioxide, and the distribution of the concentration of isopropyl alcohol at various points in time across the cross-section of the apparatus were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Aegerter, M.A., Leventis, N., Koebel, M.A., Aerogels Handbook: Advances in Sol-Gel Derived Materials and Technologies, New York: Springer, 2011.

  2. Bento, C.S.A., Alarico, S., Empadinhas, N., de Sousa, H.C., and Braga, M.E.M., J. Supercrit. Fluids, 2022, vol. 184, p. 105570. https://doi.org/10.1016/j.supflu.2022.105570

    Article  CAS  Google Scholar 

  3. An, L., Wang, J., Petit, D., Armstrong, J.N., Li, C., Hu, Y., Huang, Y., Shao, Z., and Ren, S., Appl. Mater. Today, 2020, vol. 21, p. 100843. https://doi.org/10.1016/j.apmt.2020.100843

    Article  Google Scholar 

  4. Wei, N., Wu, J., Tang, Y., Lu, S., and Wang, L., J. Power Sources, 2020, vol. 479, p. 229096. https://doi.org/10.1016/j.jpowsour.2020.229096

    Article  CAS  Google Scholar 

  5. Mahmoudpour, M., Dolatabadi, J.E.-N., Hasanzadeh, M., and Soleymani, J., Adv. Colloid Interface Sci., 2021, vol. 298, p. 102550. https://doi.org/10.1016/j.cis.2021.102550

    Article  CAS  PubMed  Google Scholar 

  6. Fonseca, L.M., Silva, F.T. da Bruni, G.P., Borges, C.D., da Zavareze, E.R., and Dias, A.R.G., Int. J. Biol. Macromol., 2021, vol. 169, p. 362. https://doi.org/10.1016/j.ijbiomac.2020.12.110

    Article  CAS  PubMed  Google Scholar 

  7. Lebedev, A.E., Katalevich, A.M., and Menshutina, N.V., J. Supercrit. Fluids, 2015, vol. 106, p. 122. https://doi.org/10.1016/j.supflu.2015.06.010

    Article  CAS  Google Scholar 

  8. Nadargi, D.Y., Kalesh, R.R., and Rao, A.V., J. Alloys Comp., 2009, vol. 480, no. 2, p. 689. https://doi.org/10.1016/j.jallcom.2009.02.027

    Article  CAS  Google Scholar 

  9. Nowak, B., Bonora, M., Zuzga, M., Werner, L., JackiewiczZagorska, A., Gac, J.M., J. Environ. Chem. Eng., 2022, vol. 10, no. 5, p. 108410. https://doi.org/10.1016/j.jece.2022.108410

    Article  CAS  Google Scholar 

  10. Yao, Ch., Dong, X., Gao, G., Sha, F., and Xu, D., J. Non-Crystal. Solid., 2021, vol. 562, p. 120778. https://doi.org/10.1016/j.jnoncrysol.2021.120778

    Article  CAS  Google Scholar 

  11. Fan, S., Chen, J., Fan, Ch., Chen, G., Liu, S., Zhou, H., Liu, R., Zhang, Y., Hu, H., Huang, Z., Qin, Y., and Liang, J., J. Hazard. Mater., 2021, vol. 416, p. 126225. https://doi.org/10.1016/j.jhazmat.2021.126225

    Article  CAS  PubMed  Google Scholar 

  12. Gao, C., Wang, X.-L., An, Q.-D., Xiao, Z.-Y., and Zhai, S.-R., Carbohyd. Polymer., 2021, vol. 256, p. 117564. https://doi.org/10.1016/j.carbpol.2020.117564

    Article  CAS  Google Scholar 

  13. Shi, X., Xiao, C., Ni, H., Gao, Q., Han, L., Xiao, D., and Jiang, S., Energy Rep., 2023, vol. 9, p. 2286. https://doi.org/10.1016/j.egyr.2023.01.023

    Article  Google Scholar 

  14. Sato, T., Sugiyama, M., Misawa, M., Hamada, K., Itoh, K., Mori, K., and Fukunaga, T., J. Mol. Liq., 2009, vol. 147, nos. 1–2, p. 102. https://doi.org/10.1016/j.molliq.2008.06.017

    Article  CAS  Google Scholar 

  15. Heidaryan, E. and Jarrahian A. J. Supercrit. Fluids., 2013, vol. 81, p. 92. https://doi.org/10.1016/j.supflu.2013.05.009

    Article  CAS  Google Scholar 

  16. Frey, K., Modell, M., and Tester, J., Fluid Phase Equilib., 2009, vol. 279, no. 1, p. 56. https://doi.org/10.1016/j.fluid.2009.02.005

    Article  CAS  Google Scholar 

  17. Abudour, A.M., Mohammad, S.A., Robinson, R.L., and Gasem, K.A.M., Fluid Phase Equilib., 2012, vol. 335, p. 74. https://doi.org/10.1016/j.fluid.2012.08.013

    Article  CAS  Google Scholar 

  18. Yang, X., Rowland, D., Sampson, C.C., Falloon, P.E., and May, E.F., Fuel, 2022, vol. 314, p. 123033. https://doi.org/10.1016/j.fuel.2021.123033

    Article  CAS  Google Scholar 

  19. Du, G. and Hu, J., Int. J. Greenhouse Gas Control, 2016, vol. 49, p. 94. https://doi.org/10.1016/j.ijggc.2016.02.025

    Article  CAS  Google Scholar 

  20. Mller, N. and Weare, J., Geochim. Cosmochim. Acta, 1992, vol. 56, no. 7, p. 2605.

    Article  Google Scholar 

  21. Lebedev, A.E., Lovskaya, D.D., and Menshutina, N.V., J. Supercrit. Fluids., 2021, vol. 174, p. 105238. https://doi.org/10.1016/j.supflu.2021.105238

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Russian Science Foundation grant no. 22-79-00154.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Golubev.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubev, E.V., Suslova, E.N. & Lebedev, A.E. Computer Simulation of Hydrodynamics and Mass Transfer of Supercritical Drying of Aerogels in Laboratory and Industrial Scale Apparatuses. Russ J Gen Chem 93, 3238–3244 (2023). https://doi.org/10.1134/S1070363223120241

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223120241

Keywords:

Navigation