Skip to main content
Log in

Simulation of the Technological Scheme for the Process of Obtaining Composite Materials Based on Aerogels

  • Selected articles originally published in Russian in Rossiiskii Khimicheskii Zhurnal (Russian Chemistry Journal)
  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The paper explores a method for the direct synthesis of functional compounds within the bulk of inorganic aerogels, coupled with the supercritical drying of composite materials. The processes for obtaining these materials are delineated into three main stages. The initial stage involves the synthesis of functional compounds on the gel surfaces. The subsequent stage entails the displacement of the solvent from the free volume of the apparatus by flowing supercritical carbon dioxide through the autoclave. The final stage is the supercritical drying process, leading to the removal of solvent from the material pores. The work provides detailed parameters for conducting both synthesis and supercritical drying processes. Additionally, a technological scheme of an industrial installation with a volume of 70 liters, employed for conducting supercritical processes and situated in Niagara LLC, Shchelkovo, is presented and described. To model these processes, a mathematical model was developed using the CHEMCAD software package, facilitating the determination of material and heat balances for individual devices and the overall technological scheme. The paper also calculates the impact of the amount of isopropyl alcohol on carbon dioxide consumption. An analysis of energy costs for the synthesis of functional compounds within aerogel volumes is conducted based on the acquired data. The mathematical model enables the identification of an energy- and resource-efficient method for the technological design of synthesis and supercritical drying processes. Notably, a reduction in energy costs within the technological scheme is achieved through the utilization of heat after compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Gibiat, V., Lefeuvre, O., Woignier, T., Pelous, J., and Phalippou, J., J. Non-Crystal. Solid., 1995, vol. 186, pp. 244–255. https://doi.org/10.1016/0022-3093(95)00049-6

    Article  CAS  Google Scholar 

  2. Hanzawa, Y., Kaneko, K., Pekala, R.W., and Dresselhaus, M.S., Langmuir, 1996, vol. 12, pp. 6167–6169. https://doi.org/10.1021/la960481t

    Article  CAS  Google Scholar 

  3. Buratti, C., Energy Build., 2017, vol. 152, pp. 472–482. https://doi.org/10.1016/j.enbuild.2017.07.071

    Article  Google Scholar 

  4. Xu, F., Xu, J., and Xu, H., Energy Storage Mater., 2017, vol. 7, pp. 8–16. https://doi.org/10.1002/adma.201701674

    Article  CAS  Google Scholar 

  5. Yang, F., Zhu, J., and Zou, X., Ceramics Int., 2018, vol. 44, no. 1, pp. 1078–1085. https://doi.org/10.1016/j.ceramint.2017.10.052

    Article  CAS  Google Scholar 

  6. Anas, M., Gönel, A.G., Bozbag, S.E., and Erkey, C., J. CO2 Util., 2017, vol. 21, pp. 82–88. https://doi.org/10.1016/j.jcou.2017.06.008

    Article  CAS  Google Scholar 

  7. Khoshnevis, H., Mint, S.M., and Yedinak, E., Chem. Phys. Lett., 2018, vol. 693, pp. 146–151. https://doi.org/10.1016/j.cplett.2018.01.001

    Article  CAS  Google Scholar 

  8. Hajime, T., Hajime, I., Yamamoto, T., and Suzuki, T., Drying Technol., 2016, vol. 19, pp. 313–324. https://doi.org/10.1081/DRT-100102906

    Article  Google Scholar 

  9. Hirashima, H., Kojima, C., Kohama, K., and Imai, H., J. Non-Crystal. Solid., 1998, vol. 225, pp. 153–156. https://doi.org/10.1016/S0022-3093(98)00035-0

    Article  CAS  Google Scholar 

  10. Perez-Caballero, F., Peikolainen, A.-L., Uibu, M., Kuusik, R., Volobujeva, O., and Koel, M., Micropor. Mesopor. Mater., 2017, vol. 108, pp. 230–236. https://doi.org/10.1016/j.micromeso.2007.04.006

    Article  CAS  Google Scholar 

  11. Maleki, H., Duraes, L., and Portugal, A. J. Non-Crystal. Solid., 2018, vol. 385, pp. 55–74. https://doi.org/10.1016/j.jnoncrysol.2013.10.017

    Article  CAS  Google Scholar 

  12. Camargo, P. and Satyanarayana, K., Wypych F. Mater. Res., 2009, vol. 12, pp. 1–39. https://doi.org/10.1590/S1516-14392009000100002

    Article  CAS  Google Scholar 

  13. Hyung, Min.Kim., Ye, Ji.Noh., Jaesang, Yu., Seong, Yun.Kim., and Jae, Ryoun.Youn., Composit. Part A: Appl. Sci. Manufactur., 2015, vol. 75, pp. 39–45. https://doi.org/10.1016/j.compositesa.2015.04.014

    Article  CAS  Google Scholar 

  14. Koebel, M., Rigacci, A., and Achard, P., J. Sol-Gel Sci. Technol., 2012, vol. 63 (3), pp. 315–339. https://doi.org/10.1007/s10971-012-2792-9

    Article  CAS  Google Scholar 

  15. Akimov, Y.K., Instrum. Exp. Techn., 2003, vol. 46, no. 3, pp. 287–299. https://doi.org/10.1023/A:1024401803057

    Article  CAS  Google Scholar 

  16. Dorcheh, A.S. and Abbasi, M.H., J. Mater. Proc. Technol., 2008, vol. 199, nos. 1–3, pp. 10–26. https://doi.org/10.1016/j.jmatprotec.2007.10.060

    Article  CAS  Google Scholar 

  17. Pierre, A.C. and Pajonk, G.M., Chem. Rev., 2002, vol. 11, pp. 4243–4265. https://doi.org/10.1002/chin.200304237

    Article  Google Scholar 

  18. Gumerova, G.I., Nuretdinov, R.R., Rezhevski, P., Kopitovski, E., and Gumerov, F.M., Vestn. Kazan. Tekhnol. Univ., 2003, no. 2, pp. 391–398.

    Google Scholar 

  19. Ryzhov, D.A., Shakirova, A.M., and Koshkina, L.Y. Vestn. Kazan. Tekhnol. Univ., 2016, no. 18, pp. 160–163.

    Google Scholar 

  20. Torres-Ramón, E., García-Rodríguez, C.M., EstévezSánchez, K.H., Ruiz-López, I.I., RodríguezJimenes, G.C., Romero de la Vega, G., and GarcíaAlvarado, M.A., J. Supercrit. Fluids, 2021, vol. 170, p. 105160. https://doi.org/10.1016/j.supflu.2020.105160

    Article  CAS  Google Scholar 

  21. Feng, Y.-q., Zhang, W., Niaz, H., He, Z.-x., Wang, S., Wang, X., and Liu, Y.-zh., Energy Convers. Manag., 2021, vol. 212. 112773. https://doi.org/10.1016/j.enconman.2020.1127

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct thisparticular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Lebedev.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shindryaev, A.V., Menshutina, N.V. & Lebedev, A.E. Simulation of the Technological Scheme for the Process of Obtaining Composite Materials Based on Aerogels. Russ J Gen Chem 93, 3230–3237 (2023). https://doi.org/10.1134/S107036322312023X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107036322312023X

Keywords:

Navigation