Skip to main content
Log in

Various Flavone Types: A Study of Synthesis Approaches and Their Antioxidant Properties (A Review)

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

This review encompasses fundamental information on flavonoids, with a specific focus on flavones and their derivatives, gathered from publicly available research on the internet. The research includes investigations into their preparation methods, reactions, applications, and crucial medical benefits. Our findings reveal that flavones constitute a significant subset within the broader flavonoid family, characterized by the structural framework of 2-phenylchromen-4-one. Furthermore, flavones exhibit diverse biological activities and can be found in various combinations in plant-derived compounds such as anthoxanthins, epigenist, flavones, and quercetins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

REFERENCES

  1. Falcone Ferreyra, M.L. Rius S.P., and Casati, P., Front. Plant Sci., 2012, vol. 3, p. 222. https://doi.org/10.3389/fpls.2012.00222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ullah, A., Munir, S., Badshah, S.L., Khan, N., Ghani, L., Poulson, B.G., Emwas, A.-H., and Jaremko, M., Molecules, 2020, vol. 25, no. 22, p. 5243. https://doi.org/10.3390/molecules25225243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Omar, R. Koparir, P., and Koparir, M., Indian Drugs, 2021, vol. 58, no. 1, p. 7. https://doi.org/10.53879/id.58.01.12427

    Article  Google Scholar 

  4. Hostetler, G.L., Ralston, R.A., and Schwartz, S.J., Adv. Nutr., 2017, vol. 8, no. 3, p. 423. https://doi.org/10.3945/an.116.012948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rakha, A., Umar, N., Rabail, R., Butt, M.S., Kieliszek, M., Hassoun, A., and Aadil, R.M., Biomed. Pharmacoth., 2022, vol. 156, p. 113945. https://doi.org/10.1016/j.biopha.2022.113945

    Article  CAS  Google Scholar 

  6. Panche, A.N., Diwan, A.D., and Chandra, S.R., J. Nutr. Sci., 2016, vol. 5, p. e47. https://doi.org/10.1017/jns.2016.41

  7. Bansal, M., Kaur, K., Tomar, J., and Kaur, L., Biomed. J. Sci. Technol Res., 2017, vol. 1, no. 6, p. 1752. https://doi.org/10.26717/BJSTR.2017.01.000530

    Article  Google Scholar 

  8. Jang, J., Kim, H.P., and Park, H., Arch. Pharm. Res., 2005, vol. 28, p. 877. https://doi.org/10.1007/bf02973870

    Article  CAS  PubMed  Google Scholar 

  9. Rice-Evans, C.A. and Packer, L., Flavonoids in Health and Disease, CRC Press, 2003.

  10. Anwar Omar, R., Koparir, P., Koparir, M., and Safin, D.A., J. Sulfur Chem., 2023, p. 1. https://doi.org/10.1080/17415993.2023.2260918

  11. Pereira, A.M., Cidade, H., and Tiritan, M.E., Molecules, 2023, vol. 28, no. 1, p. 426 https://doi.org/10.3390/molecules28010426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. González-Gallego, J., Sánchez-Campos, S., and Tunon, M., Nutr. Hosp., 2007, vol. 22, no. 3, p. 287.

    PubMed  Google Scholar 

  13. Lago, J.H.G., Toledo-Arruda, A.C., Mernak, M., Barrosa, K.H., Martins, M.A., Tibério, I.F., and Prado, C.M., Molecules, 2014, vol. 19, no. 3, p. 3570. https://doi.org/10.3390/molecules19033570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gao, H. and Kawabata, J., Bioorg. Med. Chem., 2005, vol. 13, no. 5, p. 1661. https://doi.org/10.1016/j.bmc.2004.12.010

    Article  CAS  PubMed  Google Scholar 

  15. Huck, C.W., Huber, C.G., Ongania, K.-H., and Bonn, G.K., J. Chromatogr. (A), 2000, vol. 870, nos. 1–2, p. 453. https://doi.org/10.1016/S0021-9673(99)00950-4

    Article  CAS  PubMed  Google Scholar 

  16. Tendulkar, R. and Mahajanb, S., Int. J. Innov. Sci. Technol, 2020, vol. 5, no. 3, p. 2456.

    Google Scholar 

  17. Habashneh, A.Y., El-Abadelah, M.M., Zihlif, M.A., Imraish, A., and Taha, M.O., Archiv. der Pharmazie, 2014, vol. 347, no. 6, p. 415. https://doi.org/10.1002/ardp.201300326

    Article  CAS  PubMed  Google Scholar 

  18. Slimestad, R., Fossen, T., and Vågen, I.M., J. Agric. Food Chem., 2007, vol. 55, no. 25, p. 10067. https://doi.org/10.1021/jf0712503

    Article  CAS  PubMed  Google Scholar 

  19. Bozzo, G.G. and Unterlander, N., Plant Sci. J., 2021, vol. 308, p. 110904, https://doi.org/10.1016/j.plantsci.2021.110904

    Article  CAS  Google Scholar 

  20. Chagas, M.d.S.S., Behrens, M.D., Moragas-Tellis, C.J., Penedo, G.X., Silva, A.R., and Gonçalves-De-Albuquerque, C.F., Oxid. Med. Cell. Long., 2022, vol. 2022, https://doi.org/10.1155/2022/9966750

  21. Omer, R., Rashİd, R.F., and Othman, K., J. Phys. Chem. Funct. Mater., 2023, vol. 6, no. 1, p. 43. https://doi.org/10.54565/jphcfum.1263834

    Article  Google Scholar 

  22. Koparir, P., Anwar Omar, R. Sarac, K. Koparir, M., and Safin, D.A., Polyccyl. Arom. Compd., 2023. https://doi.org/10.1080/10406638.2023.2264448

  23. Viskupičová, J., Šturdík, E., and Ondrejovič, M., Acta Chim. Slovaca, 2009, vol. 2, no. 1, p. 88.

    Google Scholar 

  24. Omar, S.Y., Mamand, D.M., Omer, R.A., Rashid, R.F., and Salih, M.I., Aro Sci. J. Koya Univ., 2023, vol. 11, no. 2, p. 109. https://doi.org/10.14500/aro.11375

    Article  Google Scholar 

  25. Rupasinghe, H.V., Molecules, 2020, vol. 25, no. 20, p. 4746. https://doi.org/10.3390/molecules25204746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tang, L., Zhang, S., Yang, J., Gao, W., Cui, J., and Zhuang, T., Molecules, 2004, vol. 9, no. 10, p. 842. https://doi.org/10.3390/91000842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee, J.-I., Son, H.-S., and Park, H., Bull. Korean Chem. Soc., 2004, vol. 25, no. 12, p. 1945. https://doi.org/10.1002/chin.200522139

    Article  CAS  Google Scholar 

  28. Firuzi, O., Lacanna, A., Petrucci, R., Marrosu, G., and Saso, L., Biochim. Biophys. Acta, 2005, vol. 1721, p. 174. https://doi.org/10.1016/j.bbagen.2004.11.001

    Article  CAS  PubMed  Google Scholar 

  29. Seijas, J.A., Vázquez-Tato, M.P., and CarballidoReboredo, R., J. Org. Chem., 2005, vol. 70, 7, p. 2855. https://doi.org/10.1021/jo048685z

    Article  CAS  PubMed  Google Scholar 

  30. Insanu, M., Ramadhania, Z.M., Halim, E.N., Hartati, R., and Wirasutisna, K.R., Pharmacognosy Res., 2018, vol. 10, no. 1, p. 60. https://doi.org/10.4103/pr.pr_59_17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Van Acker, F.A., Hageman, J.A., Haenen, G.R., Van Der Vijgh, W.J., Bast, A., and Menge, W.M., J. Med. Chem., 2000, vol. 43, no. 20, p. 3752. https://doi.org/10.1021/jm000951n

    Article  CAS  PubMed  Google Scholar 

  32. Kucukislamoglua, M., Nebioglu, M., Zengin, M., Arslan, M., and Yayli, N., J. Chem. Res., 2005, vol. 2005, no. 9, p. 556. https://doi.org/10.1002/chin.200606142

    Article  Google Scholar 

  33. Bennardi, D.O., Ruiz, D.M., Romanelli, G.P., Baronetti, G.T., Thomas, H.J., and Autino, J.C., Lett. Org. Chem., 2008, vol. 5, no. 8, p. 607. https://doi.org/10.2174/157017808786857570

    Article  CAS  Google Scholar 

  34. Bennardi, D.O., Romanelli, G.P., Jios, J.L., Autino, J.C., Baronetti, G.T., and Thomas, H.J., Arkivoc, 2008, vol. 2008. https://doi.org/10.3998/ark.5550190.0009.b12

  35. Gomes, A., Neuwirth, O., Freitas, M., Couto, D., Ribeiro, D., Figueiredo, A.G., Silva, A.M., Seixas, R.S., Pinto, D.C., Tome, A.C., Cavaleiro, J.A.F.E., and Lima, J.L., Bioorg. Med. Chem., 2009, vol. 17, no. 20, p. 7218. https://doi.org/10.1016/j.bmc.2009.08.056

    Article  CAS  PubMed  Google Scholar 

  36. Yayli, N., Uecuencue, O., Yayli, N., Demir, E., and Demirbağ, Z., Turk. J. Chem., 2008, vol. 32, no. 6, p. 785.

    CAS  Google Scholar 

  37. Usta, A., Öztürk, E., and Beriş, F.Ş., Nat. Prod. Res.. 2014, vol. 28, no. 7, p. 483, https://doi.org/10.1080/14786419.2013.879472

  38. Sarda, S.R., Pathan, M.Y., Paike, V.V., Pachmase, P.R., Jadhav, W.N., and Pawar, R.P., Arkivoc, 2006, vol. 16, no. 4, p. 43. https://doi.org/10.3998/ark.5550190.0007.g05

    Article  Google Scholar 

  39. Wera, M., Pivovarenko, V.G., and Błażejowski, J., Acta Crystallogr. (E), 2011, vol. 67, no. 2, p. o264. https://doi.org/10.1107/S1600536810053407

  40. Singh, M., Kaur, M., Vyas, B., and Silakari, O., Med. Chem., 2018, vol. 27, p. 520.

    Article  CAS  Google Scholar 

  41. Yang, Q. and Alper, H., J. Org. Chem., 2010, vol. 75, no. 3, p. 948. https://doi.org/10.1021/jo902210p

    Article  CAS  PubMed  Google Scholar 

  42. Mansour, W., Fettouhi, M., and El Ali, B., ACS Omega, 2020, vol. 5, no. 50, p. 32515. https://doi.org/10.1021/acsomega.0c04706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Das, J. and Ghosh, S., Tetrahedron Lett., 2011, vol. 52, p. 7189. https://doi.org/10.1016/j.tetlet.2011.10.134

    Article  CAS  Google Scholar 

  44. Hassner, A. and Namboothiri, I., Organic Syntheses based on Name Reactions: A Practical Guide to 750 Transformations, Elsevier, 2012.

  45. Catarino, M.D., Alves-Silva, J.M., Pereira, O.R., and Cardoso, S.M., Curr. Top. Med. Chem., 2015, vol. 15, no. 2, p. 105. https://doi.org/10.2174/1568026615666141209144506

    Article  CAS  PubMed  Google Scholar 

  46. Zangade, B., Vibhute, Y., Chavan, B., and Yeshwant, B., Der Pharm. Lett., 2011, vol. 3, no. 5, p. 20.

    CAS  Google Scholar 

  47. Kim, S.-H., Kim, H.-J., Jin, C.-B., and Lee, Y.-S., Bull. Korean Chem. Soc., 2012, vol. 33, no. 5, p. 1773. https://doi.org/10.5012/bkcs.2012.33.5.1773

    Article  CAS  Google Scholar 

  48. Sashidhara, K.V., Kumar, M., and Kumar, A., Tetrahedron Lett., 2012, vol. 53, no. 18, p. 2355. https://doi.org/10.1016/j.tetlet.2012.02.108

    Article  CAS  Google Scholar 

  49. Rosa, G.P., Seca, A.M., Barreto, M.d.C., Silva, A.M., and Pinto, D.C., Appl. Sci., 2019, vol. 9, no. 14, p. 2846. https://doi.org/10.3390/app9142846

    Article  CAS  Google Scholar 

  50. Pal, M., Subramanian, V., Parasuraman, K., and Yeleswarapu, K.R., Tetrahedron, 2003, vol. 59, no. 48, p. 9563. https://doi.org/10.1016/j.tet.2003.10.003

    Article  CAS  Google Scholar 

  51. Sum, T.H., Sum, T.J., Galloway, W.R., Collins, S., Twigg, D.G., Hollfelder, F., and Spring, D.R., Molecules, 2016, vol. 21, no. 9, p. 1230. https://doi.org/10.3390/molecules21091230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mijangos, M.V., González-Marrero, J., Miranda, L.D., Vincent-Ruz, P., Lujan-Montelongo, A., Olivera-Díaz, D., Bautista, E., Ortega, A., De La Luz Campos-González, M., and Gamez-Montaño, R., Org. Biomol. Chem., 2012, vol. 10, no. 15, p. 2946. https://doi.org/10.1039/c2ob25249j

    Article  CAS  PubMed  Google Scholar 

  53. Chen, A.H., Kuo, W.B., and Chen, C.W., J. Chin. Chem. Soc., 2003, vol. 50, no. 1, p. 123. https://doi.org/10.1002/jccs.200300017

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Omer.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadr, R.B., Abdulrahman, B.S. & Omer, R.A. Various Flavone Types: A Study of Synthesis Approaches and Their Antioxidant Properties (A Review). Russ J Gen Chem 93, 3188–3199 (2023). https://doi.org/10.1134/S1070363223120198

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223120198

Keywords:

Navigation