Skip to main content
Log in

Electrochemical Synthesis of N-Substituted 5-(1H-Indol-3-yl)-1,3,4-oxadiazole-2-amines: A Mild and Green Approach

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The work employs aliphatic and aromatic isothiocyanates and utilizes electrochemical techniques for the reaction. The process involves a two-electrode system with a conductive carbon working electrode and a counter electrode. An appropriate electrolyte, such as an organic solvent, is used, and upon applying an electric potential, electrochemical oxidation and nucleophilic substitution reactions occur, leading to the formation of the desired 1,3,4-oxadiazole-2-amines. Key advantages of this electrochemical method include its high functional group tolerance, enabling the synthesis of a wide range of compounds with different substituents. The reaction conditions can be fine-tuned for high conversion and selectivity, ensuring good overall yields of the target products. Additionally, the electrochemical method offers sustainability and convenience, making it a promising alternative to traditional synthesis. The use of electricity as an energy source is more environmentally friendly compared to traditional heating methods, contributing to greener and eco-friendly chemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

REFERENCES

  1. Ouyang, X., Piatnitski, E.L., Pattaropong, V., Chen, X., He, H.Y., Kiselyov, A.S., Velankar, A., Kawakami, J., Labelle, M., Smith, L., Lohman, J., Lee, S.P., Malikzay, A., Fleming, J., Gerlak, J., Wang, Y., Rosler, R. L., Zhou, K., Mitelman, S., and Tuma, M.C., Bioorg. Med. Chem. Lett., 2006, vol. 16, no. 5, p. 1191. https://doi.org/10.1016/j.bmcl.2005.11.094

    Article  CAS  PubMed  Google Scholar 

  2. Hatti, I., Sreenivasulu, R., Jadav, S.S., Ahsan, M.J., and Raju, R.R., Monatsh. Chem. - Chem. Monthly, 2015, vol. 146, no. 10, p. 1699. https://doi.org/10.1007/s00706-015-1448-1

    Article  CAS  Google Scholar 

  3. Ghoshal, T. and Patel, T.M., Fut. J. Pharm. Sci., 2020, vol. 6, no. 1, art. 94. https://doi.org/10.1186/s43094-020-00115-0

  4. Ducharme, Y., Blouin, M., Brideau, C., Châteauneuf, A., Gareau, Y., Grimm, E.L., Juteau, H., Laliberté, S., MacKay, B., Massé, F., Ouellet, M., Salem, M., Styhler, A., and Friesen, R.W., ACS Med. Chem. Lett., 2010, vol. 1, no. 4, p. 170. https://doi.org/10.1021/ml100029k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zarghi, A., Tabatabai, S.A., Faizi, M., Ahadian, A., Navabi, P., Zanganeh, V., and Shafiee, A., Bioorg. Med. Chem. Lett., 2005, vol. 15, no. 7, p. 1863. https://doi.org/10.1016/j.bmcl.2005.02.014

    Article  CAS  PubMed  Google Scholar 

  6. Nazar, S., Siddiqui, N., and Alam, O., Arch. Pharm., 2020, vol. 353, no. 7, p. 1900342. https://doi.org/10.1002/ardp.201900342

    Article  CAS  Google Scholar 

  7. Johns, B.A., Weatherhead, J.G., Allen, S.H., Thompson, J.B., Garvey, E.P., Foster, S.A., Jeffrey, J.L., and Miller, W.H., Bioorg. Med. Chem. Lett., 2009, vol. 19, no. 6, p. 1807. https://doi.org/10.1016/j.bmcl.2009.01.089

    Article  CAS  PubMed  Google Scholar 

  8. Li, Z., Zhan, P., and Liu, X., Mini-Rev. Med. Chem., 2011, vol. 11, no. 13, p. 1130. https://doi.org/10.2174/138955711797655407

    Article  CAS  PubMed  Google Scholar 

  9. Deeks, S.G., Kar, S., Gubernick, S.I., and Kirkpatrick, P., Nat. Rev. Drug Discov., 2008, vol. 7, no. 117. https://doi.org/10.1038/nrd2295

  10. Tokumaru, K. and Johnston, J.N., Chem. Sci., 2017, vol. 8, no. 4, p. 3187. https://doi.org/10.1039/c7sc00195a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Adachi, C., Tsutsui, T., and Saito, S., Appl. Phys. Lett., 1990, vol. 56, no. 9, p. 799. https://doi.org/10.1063/1.103177

    Article  CAS  Google Scholar 

  12. Lee, J., Shizu, K., Tanaka, H., Nomura, H., Yasuda, T., and Adachi, C., J. Mater. Chem. (C), 2013, vol. 1, no. 30, p. 4599. https://doi.org/10.1039/c3tc30699b

    Article  CAS  Google Scholar 

  13. Kuo, H.M., Li, S.Y., Sheu, H.S., and Lai, C.K., Tetrahedron, 2012, vol. 68, no. 36, p. 7331. https://doi.org/10.1016/j.tet.2012.06.092

    Article  CAS  Google Scholar 

  14. Paraschivescu, C.C., Matache, M., Dobrotă, C., Nicolescu, A., Maxim, C., Deleanu, C., Fărcăşanu, I.C., and Hădade, N.D., J. Org. Chem., 2013, vol. 78, no. 6, p. 2670. https://doi.org/10.1021/jo400023z

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, Q., Sun, Y., and Zhang, M., Macromol. Rapid Commun., 2013, vol. 34, no. 7, p. 551. https://doi.org/10.1002/marc.201200795

    Article  Google Scholar 

  16. Guin, S., Rout, S.K., Ghosh, T., Khatun, N., and Patel, B.K., RSC Adv., 2012, vol. 2, no. 8, p. 3180. https://doi.org/10.1039/c2ra00044j

    Article  CAS  Google Scholar 

  17. Chaudhari, P.S., Pathare, S.P., and Akamanchi, K.G., J. Org. Chem., 2012, vol. 77, no. 8, p. 3716. https://doi.org/10.1021/jo2025509

    Article  CAS  PubMed  Google Scholar 

  18. Dolman, S.J., Gosselin, F., O’Shea, P.D., and Davies, I.W., J. Org. Chem., 2006, vol. 71, no. 25, p. 9548. https://doi.org/10.1021/jo0618730

    Article  CAS  PubMed  Google Scholar 

  19. Yang, S.J., Lee, S.H., Kwak, H.J., and Gong, Y.D., J. Org. Chem., 2012, vol. 78, no. 2, p. 438. https://doi.org/10.1021/jo302324r

    Article  CAS  PubMed  Google Scholar 

  20. Wan, Z.K., Ousman, E.F., Papaioannou, N, and Saiah, E., Tetrahedron Lett., 2011, vol. 52, p. 4149. https://doi.org/10.1016/j.tetlet.2011.05.146

    Article  CAS  Google Scholar 

  21. Sharma, L.K., Kumar, S., Singh, S., and Singh, R.K.P., Russ. J. Electrochem., 2010, vol. 46, no. 1, p. 34. https://doi.org/10.1134/s1023193510010040

    Article  CAS  Google Scholar 

  22. Singh, S., Sharma, L.K., Saraswat, A., and Singh, R.K.P., Monatsh. Chem., 2012, vol. 143, no. 10, p. 1427. https://doi.org/10.1007/s00706-011-0711-3

    Article  CAS  Google Scholar 

  23. Benmekhbi, L., Bencharif, M., Bencharif, L., and Mosbah, S., Int. J. Electrochem. Sci., 2011, vol. 6, p. 1991. https://doi.org/10.1016/S1452-3981(23)18161-2

    Article  CAS  Google Scholar 

  24. McCreery, R.L., Chem. Rev., 2008, vol. 108, no. 7, p. 2646. https://doi.org/10.1021/cr068076m

    Article  CAS  PubMed  Google Scholar 

  25. Ghoshal, T., Nagar, V., Vutla, A., Kotturi, S., and Kuttappan, S., Tetrahedron Lett., 2019, vol. 60, no. 4, p. 358. https://doi.org/10.1016/j.tetlet.2018.12.054

    Article  CAS  Google Scholar 

  26. Ghoshal, T. and Patel, T.M., J. Iran. Chem. Soc., 2021, vol. 18, p. 2241. https://doi.org/10.1007/s13738-021-02184-1

    Article  CAS  Google Scholar 

  27. Wanka, L., Iqbal, K., and Schreiner, P.R. Chem. Rev., 2013, vol. 113, no 5, p. 3516. https://doi.org/10.1021/cr100264t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhu, Z.-H., Ren, M.-Z., Cao, B.-Q., Quan, Z.-J., and Wang, X.-C., Synthesis, 2020, vol. 52, p. 1634. https://doi.org/10.1055/s-0039-1690837

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to the Pandit Deendayal Petroleum University, Ahmedabad, Gujarat, for providing the necessary laboratory facilities. Authors are also thankful to IIT Indore for providing necessary analytical facilities. Authors are also thankful for Dr. K.P. Patel, principal of Sir P T Science College Modasa, for his continuous assistance.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khushbu G. Patel.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, T.M., Patel, K.G. & Modh, P. Electrochemical Synthesis of N-Substituted 5-(1H-Indol-3-yl)-1,3,4-oxadiazole-2-amines: A Mild and Green Approach. Russ J Gen Chem 93, 2948–2959 (2023). https://doi.org/10.1134/S1070363223110403

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223110403

Keywords:

Navigation