Skip to main content
Log in

Preparation, Microstructure, and Properties of a Ceramic Composite Based on Stabilized Zirconium Dioxide

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A pore-free ceramic composite [88ZrO2–11CeO2–Y2O3]/La0.85Y0.15Al11O18/Al2O3, consisting of a matrix based on zirconium dioxide stabilized with cerium and yttrium oxides, loaded with layered particles of lanthanum hexaaluminate and reinforced with aluminum oxide nanofibers, was obtained. Sol-gel method was used for the synthesis of all the composite components, except for aluminum nanofibers that were obtained by the electric explosion method. The phase composition, microstructure, and properties of the composite were studied depending on the combined effect of the stabilizing additives and aluminum oxide nanofibers obtained by different methods. The composite is intended to be used as a ceramic material for structural and instrumental purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Antsiferov, V.N. and Antsiferova, I.V., Vestn. Perm. Nats. Issled. Politech. Univ., Mashinostr. Materialoved., 2015, vol. 17, no. 2, p. 66.

    Google Scholar 

  2. Shuklina, A.I. and Almjasheva, O.V., Russ. J. Inorg. Chem., 2022, vol. 67, no. 6, p. 904. https://doi.org/10.1134/S0036023622060201

    Article  CAS  Google Scholar 

  3. Gusev, A.I. and Rempel’, A.A., Nanokristallicheskie materialy (Nanocrystalline Materials), Moscow: FIZMATLIT, 2000.

  4. Keyvani, A., Bahamirian, M., and Esmaeili, B., Ceram. Int., 2020, vol. 46, no. 13, p. 21284. https://doi.org/10.1016/j.ceramint.2020.05.219

    Article  CAS  Google Scholar 

  5. Sirotinkin, V., Podzorova, L., and Il’icheva, A., Mater. Chem. Phys., 2022, vol. 277, p. 125496. https://doi.org/10.1016/j.matchemphys.2021.125496

    Article  CAS  Google Scholar 

  6. Yorov, Kh.E., Baranchikov, A.E., Kiskin, M.A., Sidorov, A.A., and Ivanov, V.K., Russ. J. Coord. Chem., 2022, vol. 48, p. 89. https://doi.org/10.1134/s1070328422020014

    Article  CAS  Google Scholar 

  7. Grishchenko, D.N., Golub, A.V., Kuryavyi, V.G., Shlyk, D.Kh., and Medkov, M.A., Russ. J. Inorg. Chem., 2021, vol. 66, no. 10, p. 1592. https://doi.org/10.1134/S0036023621100065

    Article  CAS  Google Scholar 

  8. Podzorova, L.I., Il’icheva, A.A., Pen’kova, O.I., Antonova, O.S., Baikin, A.S., and Sirotinkin, V.P., Inorg. Mater., 2021, vol. 57, no. 2, p. 192. https://doi.org/10.1134/S0020168521020102

    Article  CAS  Google Scholar 

  9. Smirnov, V.V., Smirnov, S.V., Obolkina, T.O., Antonova, O.S., Gol’dberg, M.A., and Barinov, S.M., Dokl. Chem., 2020, vol. 494, no. 2, p. 159. https://doi.org/10.1134/S0012500820100043

    Article  CAS  Google Scholar 

  10. Viazzi, C., Bonino, J.P., Ansart, F., and Barnabé, A., J. Alloys Compd., 2008, vol. 452, no. 2, p. 377.

    Article  CAS  Google Scholar 

  11. Vol’khin, V.V., Zharnyl’skaya, A.L., Kazakov, D.A., and Leont’eva, G.V., Izv. Vyssh. Uchebn. Zaved., Ser. Khim., Khim. Tekhnol., 2010, vol. 53, no. 7, p. 3.

    Google Scholar 

  12. Porozova, S.E., Kul’met’eva, V.B., Pozdeeva, T.Y., and Shokov, V.O., Russ. J. Non-Ferr. Met., 2021, vol. 62, no. 2, p. 226. https://doi.org/10.3103/S1067821221020103

    Article  Google Scholar 

  13. Duangsupa, C. and Kulkov, S.N., J. Adv. Res. Dyn. Control Syst., 2020, vol. 12, no. 4, p. 733.

    Article  Google Scholar 

  14. Bakradze, M.M., Doronin, O.N., Artemenko, N.I., Stekhov, P.A., Marakhovskii, P.S., and Stolyarova, V.L., Russ. J. Inorg. Chem., 2021, vol. 66, no. 5, p. 789. https://doi.org/10.1134/S003602362105003X

    Article  CAS  Google Scholar 

  15. Naga, S.M., Elshaer, M., Awaad, M., and Amer, A.A., Mater. Chem. Phys., 2019, vol. 232, p. 23. https://doi.org/10.1016/j.matchemphys.2019.04.055

    Article  CAS  Google Scholar 

  16. Kurapova, O.Y., Shugurov, S.M., Savelev, D.A., Konakov, V.G., Lopatin, S.I., and Vasil’eva, E.A., Ceram. Int., 2021, vol. 47, no. 8, p. 11072. https://doi.org/10.1016/j.ceramint.2020.12.230

    Article  CAS  Google Scholar 

  17. Fedorenko, N.Yu., Kalinina, M.V., Myakin, S.V., Khamova, T.V., Efimova, L.N., and Shilova, O.A., Inorg. Mater. Appl. Res., 2022, vol. 13, no. 4, p. 1005. https://doi.org/10.1134/S207511332204013X

    Article  Google Scholar 

  18. Oladipo Lawal, S., Takahashi, Yu., Nagasawa, H., Tsuru, T., and Kanezashi, M., J. Sol-Gel Sci. Technol., 2022, vol. 104, p. 566. https://doi.org/10.1007/s10971-022-05800-5

    Article  CAS  Google Scholar 

  19. Geguzin, Ya.E., Fizika spekaniya (The Physics of Sintering), Moscow: Nauka, 1984.

  20. Kern, F. and Gommeringer, A., J. Ceram. Sci. Technol., 2018, vol. 9, no. 1, p. 93. https://doi.org/10.4416/JCST2017-00046

    Article  Google Scholar 

  21. Fujii, T., Muragaki, H., Hatano, H., and Hirano, S., Ceram. Trans., 1991, vol. 22, p. 693.

    CAS  Google Scholar 

  22. Pfeifer, S., Demirci, P., Duran, R., and Stolpmann, H., J. Eur. Ceram. Soc., 2016, vol. 36, no. 3, p. 725. https://doi.org/10.1016/j.jeurceramsoc.2015.10.028

    Article  CAS  Google Scholar 

  23. Yuan, L.-J., Zhang, P.-J., Zuo, F., Luo, R.-X., Guo, Z.-L., Plucknett, K.P., Jiang, B.-B., Nie, G.-L., Meng, F., Valca’rcel-Jua’rez, V., Maitre, A., and Lin, H.-T., J. Eur Ceram. Soc., 2021, vol. 41, no. 1, p. 706. https://doi.org/10.1016/j.jeurceramsoc.2020.08.026

    Article  CAS  Google Scholar 

  24. Shevchenko, V.Ya. and Barinov, S.M., Tekhnicheskaya keramika (Technical Ceramics), Moscow: Nauka, 1993.

  25. Wang, L., Yan, J., Zhang, R., Li, Y., Shen, W., Zhang, J., Zhong, M., and Guo, Sh., ACS Appl. Mater. Interfaces, 2021, vol. 13, no. 8, p. 9875. https://doi.org/10.1021/acsami.0c20854

    Article  CAS  PubMed  Google Scholar 

  26. Betz, U., Sturm, A. Loeffler, J.F., Wagner, W., Wiedenmann, A., and Hahn, H., Nanostruct. Mater., 1999, vol. 12, no. 5–8, p. 689.

    Article  Google Scholar 

  27. Dudkin, B.N., Bugaeva, A.Yu., and Zainullin, G.G., Izv. Komi Nauchn. Tsentra Ural. Otd. Ross. Akad. Nauk, 2011, no. 2(6), p. 19.

    Google Scholar 

  28. Messing, G.L. and Kumagai, M., J. Am. Ceram. Soc., 1989, vol. 72, no. 1, p. 40. https://doi.org/10.1111/j.1151-2916.1989.tb05950.x

    Article  CAS  Google Scholar 

  29. Gordeev, Yu.I., Abkaryan, A.K., Zeer, G.M., and Lepeshev, A.A., Vestn. Sib. Gos. Aerokosm. Univ., 2013, no. 3(49), p. 174.

    Google Scholar 

  30. Pakhomov, N.A., Nauchnye osnovy prigotovleniya katalizatorov: vvedenie v teoriyu i praktiku (Scientific Basis for the Preparation of Catalysts: an Introduction to Theory and Practice), Novosibirsk: Sib. Otd. Ross. Akad. Naik, 2011.

  31. Moraes, M.C., Elias, C.N., Filho, J.D., and Oliveira, L.G., Mater. Res., 2004, no. 7, p. 643. https://doi.org/10.1590/s1516-14392004000400021

    Article  Google Scholar 

  32. Tekeli, S., J. Alloys Compd., 2005, vol. 391, p. 217. https://doi.org/10.1016/j.jallcom.2004.08.084

    Article  CAS  Google Scholar 

  33. Arun, A., Kumar, K., and Chowdhury, A., J. Mater. Res., 2022, vol. 37, p. 1953. https://doi.org/10.1557/s43578-022-00792-y

    Article  CAS  Google Scholar 

  34. Ferreira Coutinho, I., Cipriano da Silva, P., Pessanha Moreira, L., Strecker, K., Rodrigues Pais Alves, M.F., and Dos Santos, C., J. Mech. Behav. Biomed. Mater., 2022, vol. 129, no. 17, p. 105171. https://doi.org/10.1016/j.jmbbm.2022.105171

    Article  CAS  Google Scholar 

  35. Dudkin, B.N. and Krivoshapkin, P.V., Colloid J., 2008, vol. 70, no. 1, p. 20. https://doi.org/10.1134/S1061933X08010043

    Article  CAS  Google Scholar 

  36. Nazarenko, O.B., Il’in, A.P., and Tikhonov, D.V., Elektricheskii vzryv provodnikov. Poluchenie nanoporoshkov metallov i tugoplavkikh nemetallicheskikh soedinenii (Electric Explosion of Conductors: Preparation of Nanopowders of Metal and Nonmetallic Refractory Compounds), Saarbrücken: LAP Lambert Academic, 2012.

  37. Kraus, W. and Nolze, G., J. Appl. Cryst., 1996, vol. 29, p. 301. https://doi.org/10.1107/S0021889895014920

    Article  CAS  Google Scholar 

  38. Belsky, A., Hellenbrandt, M., Karen, V.L., and Luksch, P., Acta Crystallogr., Sect. B, 2002, vol. 58, no. 3, p. 364. https://doi.org/10.1107/s0108768102006948

    Article  Google Scholar 

  39. Egorov-Tismenko, Yu.K., Kristallografiya i kristallokhimiya (Crystallography and Crystal Chemistry), Moscow: KDU, 2005.

Download references

Funding

This study was financially supported within the framework of the scientific project of the Scientific and Educational Center (no. 122040100040-0) and of research work (topic no. 1021051101544-1-1.4.3) using the equipment of the “Chemistry” Collective Use Center, Institute of Chemistry of Federal Research Centre “Komi Scientific Center, Ural Branch, Russian Academy of Sciences,” and of the “Geoscience” Collective Use Center, Institute of Geology, “Komi Scientific Center, Ural Branch, Russian Academy of Sciences,” as well as of the Pitirim Sorokin Syktyvkar State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Bugaeva.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bugaeva, A.Y., Nazarova, L.Y., Tropnikov, E.M. et al. Preparation, Microstructure, and Properties of a Ceramic Composite Based on Stabilized Zirconium Dioxide. Russ J Gen Chem 93, 2822–2830 (2023). https://doi.org/10.1134/S1070363223110117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223110117

Keywords:

Navigation