Skip to main content
Log in

Synthesis, Antibacterial, and Antimonooxidase Activity of 4-(2-Methyl-1,3-oxazol-5-yl)benzenesulfonamide

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A new method for obtaining 4-(2-methyl-1,3-oxazol-5-yl)benzenesulfonamide, an antiglaucomatous drug candidate oxazopt, was developed using a diazotization reaction. A combined potentiated effect of the antimicrobial action of carbapenems (meropenem) and aminoglycosides (gentamicin) against antibiotic-resistant gram-positive bacteria Enterococcus faecium, Enterococcus faecalis and gram-negative bacteria Escherichia coli, and antimonooxidase effect in vitro was revealed for this compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme

REFERENCES

  1. O’Herin, C., Moriuchi, Y., Bemis, T., Kohlbrand, A., and Burkart, M., and Cohen, S., J. Med. Chem., 2023, vol. 66, no. 4, p. 2789. https://doi.org/10.1021/acs.jmedchem.2c01843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Khokhlov, A.L., Shetnev, A.A., Korsakov, M.K., Fedorov, V.N., Tyushina, A.N., Volkhin, N.N., and Vdovichenko, V.P., Bull. Experim. Biol. Med., 2023, vol. 175, no. 2, p. 166. https://doi.org/10.47056/0365-9615-2023-175-2-166-170

    Article  Google Scholar 

  3. Krasavin, M., Shetnev, A., Sharonova, T., Baykov, S., Tuccinardi, T., Kalinin, S., and Supuran, C.T., Bioorg. Chem., 2018, vol. 76, p. 88. d https://doi.org/10.1016/j.bioorg.2017.10.005

    Article  CAS  PubMed  Google Scholar 

  4. Supuran, C.T. and Mugelli, A., Pharmadvances, 2019, p. 14. https://doi.org/10.36118/pharmadvances.00.2019.06

  5. Krasavin, M., Shetnev, A., Baykov, S., Kalinin, S., Nocentini, A., Sharoyko, V., and Supuran, C.T., Eur. J. Med. Chem., 2019, vol. 168, p. 301. https://doi.org/10.1016/j.ejmech.2019.02.044

    Article  CAS  PubMed  Google Scholar 

  6. Shetnev, A., Baykov, S., Kalinin, S., Belova, A., Sharoyko, V., Rozhkov, A., and Krasavin, M., Int. J. Mol. Sci., 2019, vol. 20, no. 7, p. 1699. https://doi.org/10.3390/ijms20071699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McDonald, P.C., Winum, J., Supuran, C.T., and Dedhar, S., Oncotarget., 2012, vol. 3, p. 84. https://doi.org/10.18632/oncotarget.422

    Article  PubMed  PubMed Central  Google Scholar 

  8. Williams, K.J. and Gieling, R.G., Int. J. Mol. Sci., 2019, vol. 23, p. 6080. https://doi.org/10.3390/ijms20236080

    Article  CAS  Google Scholar 

  9. Nocentini, A., Capasso, C., and Supuran, C.T., Antibiotics, 2023, vol. 1, p. 142. https://doi.org/10.3390/antibiotics12010142

    Article  CAS  Google Scholar 

  10. Carradori, S., Angeli, A., Sfragano, P.S., Yzeiri, X., Calamante, M., Tanini, D., Capperucci, A., Kunstek, H., Varbanov, M., Capasso, C., and Supuran, C.T., Int. J. Mol. Sci., 2023, vol. 24, p. 9610. https://doi.org/10.3390/ijms24119610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Caruso, D., Connolly, M., Nguyen, T., and Siegel, J., bioRxiv., 2023. Preprint 529947. https://doi.org/10.1101/2023.02.25.529947

  12. Mincione, F., Nocentini, A., and Supuran, C.T., Expert Opin. Drug Discov., 2021, vol. 16, no. 10, p. 1209. https://doi.org/10.1080/17460441.2021.1922384

    Article  CAS  PubMed  Google Scholar 

  13. Krasavin, M., Korsakov, M., Dorogov, M., Tuccinardi, T., Dedeoglu, N., and Supuran, C.T., Eur. J. Med. Chem., 2015, vol. 101, p. 334. https://doi.org/10.1016/j.ejmech.2015.06.022

    Article  CAS  PubMed  Google Scholar 

  14. Dorogov, M.V. and Krasavin, M.Yu., RF Patent 2607630, 2015, Appl. RF 2015138755, 2017.

  15. Efimova, Yu.A., Shetnev, A.A., Gasilina, O.A., and Korsakov, M.K., Butlerovsk. Soobshch., 2022, vol. 72, no. 12, no. 15. https://doi.org/10.37952/ROI-jbc-01/22-72-12-15

  16. Baweja, G.S., Gupta, S., Kumar, B., and Patel, P., Mol. Divers., 2023. https://doi.org/10.1007/s11030-023-10634-6

  17. Shilkar, D., Siddique, M., Bua, S., Yasmin, S., Patil, M., Timiri, A., Supuran, C.T., and Jayaprakash, V.J., Enzyme Inhib. Med. Chem., 2023, vol. 38, no. 1. Article 2235089. https://doi.org/10.1080/14756366.2023.2235089

  18. Volchegorskii, I.A., Skobeleva, N.A., and Lifshits, R.I., Vopr. Med. Khim., 1991, vol. 37, no. 1, p. 86.

    CAS  PubMed  Google Scholar 

  19. Opredelenie chuvstvitel’nosti mikroorganizmov k antibakterial’nym preparatam (MUK, 4.2.1890-04) (Determination of the Sensitivity of Microorganisms to Antibacterial Drugs), Klin. Mikrobiol. Antimikrob. Khimioter., 2004, vol. 6, no. 4, p. 306.

  20. Hashmi, H.B., Farooq, M.A., Khan, M.H., Alshammari, A., Aljasham, A.T., Rashid, S.A., Khan, N.R., Hashmi, I.B., Badar, M., and Mubarak, M.S., Pharmaceuticals, 2023, vol. 16, p. 687. https://doi.org/10.3390/ph16050687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Abutaleb, N.S., Elhassanny, A.E.M., Flaherty, D.P., Seleem, M.N., Peer J., 2021, vol. 30, no. 9, p. e11059. https://doi.org/10.7717/peerj.11059

  22. P’yankov, I.A., Kononova, L.I., Korobov, V.P., Smolyak, A.A., and Shklyaev, Yu.V., Vestn. PNIPU. Khim. Tekhnol. Biotekhnol., 2018, vol. 4, p. 59. https://doi.org/10.15593/2224-9400/2018.4.05

    Article  Google Scholar 

  23. Bellio, P., Fagnani, L., Nazzicone, L., and Celenza, G., MethodsX., 2021, vol. 8. Article 101543. https://doi.org/10.1016/j.mex.2021.101543

  24. Hindson, S.A., Andrews, R.C., Danson, M.J., van der Kamp, M.W., Manley, A.E., Sutcliffe, O.B., Haines, T.S.F., Freeman, T.P., Scott, J., Husbands, S.M., Blagbrough, I.S., Anderson, J.L.R., Carbery, D.R., and Pudney, C.R., FEBS J., 2023, vol. 290, p. 3243. https://doi.org/10.1111/febs.16741

    Article  CAS  PubMed  Google Scholar 

  25. Imai, S., Kikui, H., Moriyama, K., and Togo, H., Tetrahedron, 2015, vol. 71, no. 33, p. 5267. https://doi.org/10.1016/j.tet.2015.06.022

    Article  CAS  Google Scholar 

  26. Iwanowicz, E.J., Watterson, S.H., Guo, J., Pitts, W.J., Murali Dhar, T.G., Shen, Z., Chen, P., Gu, H.H., Fleener, C.A., Rouleau, K.A., Cheney, R.M., Townsend, R.M., and Hollenbaugh, D.L., Bioorg. Med. Chem. Lett., 2015, vol. 13, no. 12. P., 2059. https://doi.org/10.1016/s0960-894x(03)00258-0

Download references

Funding

The synthesis and study of the antimonoamine oxidase activity of the compounds was carried out with the financial support of the Russian Science Foundation (grant No. 22-13-20085). The antibacterial properties and potentiation effects of the drug candidate oxazopt were carried out at the expense of the Ministry of Education (state assignment 073-00077-21-02 “Development of an innovative drug against glaucoma based on selective inhibition of carbonic anhydrase II,” registration number 730000F.99.1.BV10AA00006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Shetnev.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasilina, O.A., Romanycheva, A.A., Shetnev, A.A. et al. Synthesis, Antibacterial, and Antimonooxidase Activity of 4-(2-Methyl-1,3-oxazol-5-yl)benzenesulfonamide. Russ J Gen Chem 93, 2749–2755 (2023). https://doi.org/10.1134/S1070363223110038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223110038

Keywords:

Navigation