Skip to main content
Log in

N-(4-Iodo-1,3-diphenylbutyl)acetamide: Nature and Strength of Hydrogen Bonds in Crystal and Solutions

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

N-(4-Iodo-1,3-diphenylbutyl)acetamide was obtained. Structure of the amide was confirmed by single crystal X-ray diffraction analysis; the nature and strength of the hydrogen bonds formed by the compound in the crystal and solutions were studied by quantum chemical calculations (DFT, AIM analysis). The hydrogen bond energy was assessed by two methods and compared with each other. A comparison was made of the experimental and theoretical infrared spectrum of the compound under study. PASS analysis was performed to predict the biological activity of N-(4-iodo-1,3-diphenylbutyl)acetamide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Kaiser, D., Bauer, A., Lemmerer, M. and Maulide, N., Chem. Soc. Rev., 2018, vol. 47, p. 7899. https://doi.org/10.1039/c8cs00335a

    Article  CAS  PubMed  Google Scholar 

  2. Smith, A.M. and Whyman, R., Chem. Rev., 2014, vol. 114, no. 10, p. 5477. https://doi.org/10.1021/cr400609m

    Article  CAS  PubMed  Google Scholar 

  3. Fröhlich, T. and Tsogoeva, S.B., J. Med. Chem., 2016, vol. 59, no. 21, p. 9668. https://doi.org/10.1021/acs.jmedchem.6b01486

    Article  CAS  PubMed  Google Scholar 

  4. Solarte, C., Dos Santos, M., Gonzalez, S., Miranda, L.S.M., Guillot, R., Ferry, A., Gallier, F., Uziel, J., and LubinGermain, N., Synthesis, 2017, vol. 49, no. 9, p. 1993. https://doi.org/10.1055/S-0036-1588409

    Article  CAS  Google Scholar 

  5. Xiong, L., Zhu, X.-L., and Shen, Y.-Q., Eur. J. Med. Chem., 2015, vol. 95, p. 424. https://doi.org/10.1016/j.ejmech.2015.03.060

    Article  CAS  PubMed  Google Scholar 

  6. Prabhuswamy, M., Kumara, K., Pavithra, G., Kumar, K.A., and Lokanath, N.K., Chem. Data Collect., 2016, vols. 3–4, p. 26. https://doi.org/10.1016/j.cdc.2016.06.004

    Article  Google Scholar 

  7. Moskalik, M.Yu., Garagan, I.A., Astakhova, V.V., Sterkhova, I.V., and Shainyan, B.A., Tetrahedron, 2021, vol. 88, Article no. 132145. https://doi.org/10.1016/j.tet.2021.132145

  8. Huang, J.-M., Ye, Z.-J., Chen, D.-S., and Zhu, H., Org. Biomol. Chem., 2012, vol. 10, p. 3610. https://doi.org/10.1039/C2OB25142F

    Article  CAS  PubMed  Google Scholar 

  9. Raghavendra, B., Mandal, P.K., and Arunan, E., Phys. Chem. Chem. Phys., 2006, vol. 8, p. 5276. https://doi.org/10.1039/B611033A

    Article  CAS  PubMed  Google Scholar 

  10. Steinborn, D. and Schwieger, S., Chem. Eur. J., 2007, vol. 13, p. 9668. https://doi.org/10.1002/chem.200700666

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, J. and Li, X., J. Mol. Model., 2019, vol. 25, p. 241. https://doi.org/10.1007/s00894-019-4140-2

    Article  CAS  PubMed  Google Scholar 

  12. Jeffrey, G.A., An introduction to hydrogen bonding, New York: Oxford University Press, 1997.

  13. Cremer, D. and Kraka, E., Angew. Chem. Int. Ed., 1984, vol. 23, no. 8, p. 627.

    Article  Google Scholar 

  14. Johnson, R.D., III NIST Computational Chemistry Comparison and Benchmark Database, Precomputed Vibrational Scaling Factors, 2013. http://cccbdb.nist.gov/vibscalejust.asp

  15. Socrates, G., Infrared and Raman Characteristic Group Frequencies. Tables and Charts, John Wiley & Sons, Ltd, 2001.

  16. Iogansen, A.V. and Rassadin, B.V., J. Appl. Spectr., 1969, vol. 11, no. 5, p. 1318. https://doi.org/10.1007/bf00607982

    Article  Google Scholar 

  17. Wolfs, I. and Desseyn, H.O., J. Mol. Struct. (Theochem.), 1996, vol. 360, no. 1, p. 81. https://doi.org/10.1016/0166-1280(95)04366-7

    Article  CAS  Google Scholar 

  18. Davies, M. and Thomas, D.K., J. Phys. Chem., 1956, vol. 60, no. 6, p. 767.

    Article  CAS  Google Scholar 

  19. Sterkhova, I.V., Astakhova, V.V., and Shainyan, B.A., J. Mol. Struct., 2017, vol. 1141, p. 351. https://doi.org/10.1016/j.molstruc.2017.03.095

    Article  CAS  Google Scholar 

  20. Sterkhova, I.V., Lazarev, I.M., and Lazareva, N.F., J. Mol. Struct., 2019, vol. 1184, p. 200. https://doi.org/10.1016/j.molstruc.2019.02.030

    Article  CAS  Google Scholar 

  21. Sterkhova, I.V., Chipanina, N.N., Oznobikhina, L.P., Tolstikova, L.L., and Shainyan, B.A., J. Mol. Struct., 2022, vol. 1250, Article no. 131676. https://doi.org/10.1016/j.molstruc.2021.131676

  22. Karthika, M., Senthilkumar, L., and Kanakaraju, R., Comp. Theor. Chem., 2012, vol. 979, p. 54. https://doi.org/10.1016/j.comptc.2011.10.015

    Article  CAS  Google Scholar 

  23. Plumley, J.A. and Dannenberg, J.J., J. Comput. Chem., 2011, vol. 32, no. 8, p. 1519. https://doi.org/10.1002/jcc.21729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Balabin, R.M., J. Chem. Phys., 2008, vol. 129, p. 164101. https://doi.org/10.1063/1.2997349

    Article  CAS  PubMed  Google Scholar 

  25. Filimonov, D.A. and Poroikov, V.V., Probabilistic Approach in Activity Prediction, Cambridge: RSC Publishing, 2008.

  26. Ragdale, S.W., The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment. Metal Ions in Life Sciences, 2014, vol. 14, p. 125. https://doi.org/10.1007/978-94-017-9269-1_6

    Article  CAS  Google Scholar 

  27. Hristov, A.N., Oh, J., Giallongo, F., Frederick, T.W., Harper, M.T., Weeks, H.L., Branco, A.F., Moate, P.J., Deighton, M.H., Williams, S.R., Kindermann, M., and Duval, S., Proc. Nat. Acad. Sci. USA, 2015, vol. 112, no. 34, p. 10663. https://doi.org/10.1073/pnas.1504124112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chitpinityol, S. and Crabbe, M.J.C., Food Chem., 1998, vol. 61, no. 4, p. 395. https://doi.org/10.1016/S0308-8146(97)00090-3

    Article  CAS  Google Scholar 

  29. Rawlings, N.D., Biochimie, 2010, vol. 92, no. 11, p. 1463. https://doi.org/10.1016/j.biochi.2010.04.013

    Article  CAS  PubMed  Google Scholar 

  30. Mary, Y.S., Resmi, K.S., Panicker, C.Y., Miniyar, P.B., Armaković, S., Armaković, S.J., Thomas, R., and Sureshkumar, B., J. Mol. Struct., 2018, vol. 1173, p. 469. https://doi.org/10.1016/j.molstruc.2018.07.026

  31. Sheldrick, G.M., Acta Crystallogr. (A), 2008, vol. 64, p. 112. https://doi.org/10.1107/S0108767307043930

    Article  CAS  PubMed  Google Scholar 

  32. Frish, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, revision E.01; Gaussian, Inc.: Wallingford, CT, 2009.

  33. Bader, R.F.W. and Matta, C.F., Found. Chem., 2013, vol. 15, p. 253. https://doi.org/10.1007/s10698-012-9153-1

    Article  CAS  Google Scholar 

  34. Keith, T.A., AIMAll (Version 15.05.18). TK Gristmill Software, Overland Park KS, USA (aim.tkgristmill.com), 2015.

  35. Espinosa, E., Molins, E., and Lecomte, C., Chem. Phys. Lett., 1998, vol. 285, no. 3–4, p. 170. https://doi.org/10.1016/S0009-2614(98)00036-0

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The X-ray data were obtained using the resources of the Baikal Analytical Center of Joint Use of the Siberian Branch of the Russian Academy of Sciences.

Funding

This work financially supported by the Russian Academy of Sciences (project no. 121021000264-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Sterkhova.

Ethics declarations

The authors declare no conflict of interests.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sterkhova, I.V., Garagan, I.A. N-(4-Iodo-1,3-diphenylbutyl)acetamide: Nature and Strength of Hydrogen Bonds in Crystal and Solutions. Russ J Gen Chem 93, 2677–2683 (2023). https://doi.org/10.1134/S1070363223100225

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223100225

Keywords:

Navigation