Skip to main content
Log in

Nucleation and Growth Kinetics of Potassium Dihydrogen Phosphate Crystal in Stirred Tank Crystallizer

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The use of stirred tank crystallizers (STCs) for the separation and purification of crystals has recently garnered increased attention. Previous research on the crystallization of potassium dihydrogen phosphate (KDP) has primarily concentrated on process efficiency and thermodynamics, with less emphasis on kinetics. In this study, we employ STC technology to delve into the crystallization process of KDP. We explored the mechanisms underlying crystal formation by continuously withdrawing a suspension containing target crystals of a specific size distribution. Our investigation of the KDP crystallization process focuses on key parameters—suspension density (MT), solution supersaturation (ΔC), and stirring rate (NP) that influence crystal growth and the nucleation process. We propose and validate two crystallization kinetic models for crystal growth and nucleation rates against STC data. By employing multivariate nonlinear regression analysis, we extract crystallization kinetics parameters using the crystallization kinetics model. We also conduct comparative studies of two crystallization kinetic rates. Our findings reveal that the parameters provided by the kinetic mathematical model align well with the experimental data. Furthermore, the discrepancy between experimental and calculated values is maintained within an acceptable range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Langlet, M., Nadaud, F., and Benali, M., Kona, 2011, vol. 29, p. 168. https://doi.org/10.14356/kona.2011019

    Article  CAS  Google Scholar 

  2. Seki, H. and Ye. S., Chem. Eng. Sci., 2015, vol. 133, p. 16. https://doi.org/10.1016/j.ces.2014.12.027

    Article  CAS  Google Scholar 

  3. Jagadesh, D., Kubota, N., Yokota, M., Doki, N., and Sato, A., J. Chem. Eng. Japan, 1999, vol. 32, p. 14. https://doi.org/10.1252/jcej.32.514

  4. Simone, E., Zhang, W., and Nagy, Z.K., Cryst. Growth. Des., 2015, vol. 15, p. 2908. https://doi.org/10.1021/acs.cgd.5b00337

    Article  CAS  Google Scholar 

  5. Mohameed, H., Abu-Jdayil, A.B., and Khateeb, M.A., Chem. Eng. Process, 2002, vol. 41, p. 297. https://doi.org/10.1016/S0255-2701(01)00145-3

    Article  CAS  Google Scholar 

  6. Zheng, D., Zou, W., Yan, J., Peng, C., Fu, Y., Li, B., and Zeng, L., Asia-Pacific J. Chem. Eng., 2019, vol. 14, p. 2381. https://doi.org/10.1002/apj.2381

  7. Doki, N., Kubota, N., Yokota, M., Chianese, A., J. Chem. Eng. Japan, 2002, vol. 35, p. 670. https://doi.org/10.1252/jcej.35.670

    Article  CAS  Google Scholar 

  8. Rawlings, J.B., Witkowski, W.R., and Eaton, J.W., Powder Technol., 1992, vol. 69, p. 1400. https://doi.org/10.1016/j.reffit.2017.01.002

    Article  Google Scholar 

  9. Lopes, A. and Farelo, F., J. Cryst. Growth, 2006, vol. 290, p. 213. https://doi.org/10.1016/j.jcrysgro.2006.01.016

    Article  CAS  Google Scholar 

  10. Ristic, R.I., Shekunov, B.Y., and Sherwood, J.N., J. Cryst. Growth, 1997, vol. 179, p. 205. https://doi.org/10.1016/s0022-0248(97)00106-1

    Article  CAS  Google Scholar 

  11. Li, X., Song, X., Liu, G., and Yu, J., J. Cryst. Growth, 2009, vol. 311, p. 3167. https://doi.org/10.1016/j.jcrysgro.2009.03.007

    Article  CAS  Google Scholar 

  12. Zheng, D., Li, J., Jin, Y., Zou, D., and Zhu, X., Powder Technol., 2017, vol. 314, p. 427. https://doi.org/10.1016/j.powtec.2017.01.077

    Article  CAS  Google Scholar 

  13. Hulburt, H. and Katz, S., Chem. Eng. Sci., 1964, vol. 19, p. 555. https://doi.org/10.1016/0009-2509(64)85047-8

    Article  CAS  Google Scholar 

  14. Zheng, D., Zou, W., Peng, C., Fu, Y., Yan, J., and Zhang, F., Int. J. Chem. Eng. 2019, vol. 13, p. 1. https://doi.org/10.1155/2019/4836213

  15. Sarkar, D., Rohani, S., and Jutan, A., Chem. Eng. Sci., 2006. vol. 61, p. 5282. https://doi.org/10.1016/j.ces.2006.03.055

    Article  CAS  Google Scholar 

  16. Tavare, N.S., Separ. Purif., 1993, vol. 22, p. 93. https://doi.org/10.1007/978-1-4899-0233-7_6

    Article  CAS  Google Scholar 

  17. Marchisio, D.L., Barresi, A.A., and Garbero, M., AIChe. J., 2002, vol. 48, p. 2039. https://doi.org/10.1002/aic.690480917

    Article  CAS  Google Scholar 

  18. Botsaris, G.D., Qian, R.Y., and Barrett, A., AIChe J., 1999, vol. 45, p. 201. https://doi.org/10.1002/aic.690450119

    Article  CAS  Google Scholar 

Download references

Funding

This research was made possible through the support of the Undergraduate Training Program for Innovation and Entrepreneurship (grant no. S202210622048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Zheng.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y. Nucleation and Growth Kinetics of Potassium Dihydrogen Phosphate Crystal in Stirred Tank Crystallizer. Russ J Gen Chem 93, 2632–2637 (2023). https://doi.org/10.1134/S1070363223100171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223100171

Keywords:

Navigation