Skip to main content
Log in

Transition Metal Complexes of 2-Aminopyridine Derivatives as Cyclooxygenase Inhibitors: Stability, Spectral, and Thermal Characterization, Electrochemical Behavior, DFT Calculations, Molecular Docking, and Biological Activities

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A series of Mn(II), Fe(III), and Co(II), complexes with two ligands derived from 2-aminopyridine, 4-hydroxy-2-methyl-N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide (L1) and 2-{[3-(trifluoromethyl)phenyl]-amino}-3-pyridinecarboxylic acid (L2), was prepared and characterized using elemental analysis, molar conductance, TG measurements, IR, UV-Vis, ESR, and magnetic measurements. The coordination mode of L1 and L2 ligands was evaluated and the different geometries around the metals were determined. A complementary computational study using density functional theory (DFT) calculations was carried out to optimize the structures of the metal complexes and to confirm the proposed geometries. Using the same theoretical method, the investigation of the frontier molecular orbitals (FMOs) was used to predict the stability/reactivity of the complexes. The study of the complexation in solution allowed the determination of the stability constants of the complexes confirming their stability in solution. The distribution of the species involving Co(II) over the whole pH-range was also studied. The electrochemical behavior of the ligands and their metal complexes was determined by cyclic voltammetry which revealed irreversible redox processes for all the compounds. The study of the biological activities of the synthesized compounds indicates that the metal complexes displayed enhanced antioxidant and antibacterial properties. Molecular docking results of the Co–L1 complex with bacterial DHPS confirmed that the metal-based compound could efficiently inhibit bacterial growth while the interactions with cyclooxygenase (COX-1 and COX-2) revealed that the compound could act as efficient anti-inflammatory drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Moustakas, M., Materials, 2021, vol. 14, p. 549. https://doi.org/10.3390/ma14030549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gumienna-Kontecka, E., Rowińska-Żyrek, M., and Łuczkowski, M., The Role of Trace Elements in Living Organisms, Chichester, UK: John Wiley & Sons, Ltd, 2018, p. 177. https://doi.org/10.1002/9781119133780.ch9

  3. Mehri, A., Int. J. Prev. Med., 2020, vol. 11, p. 2. https://doi.org/10.4103/ijpvm.IJPVM_48_19

  4. Bouchoucha, A., Zaater, S., Bouacida, S., Merazig, H., and Djabbar, S., J. Mol. Struct., 2018, vol. 1161, p. 345. https://doi.org/10.1016/j.molstruc.2018.02.057

    Article  CAS  Google Scholar 

  5. Hussain, A., AlAjmi, M.F., Rehman, M.T., Amir, S., Husain, F.M., Alsalme, A., Siddiqui, M.A., AlKhedhairy, A.A., and Khan, R.A., Sci. Rep., 2019, vol. 9, p. 5237. https://doi.org/10.1038/s41598-019-41063-x

  6. Tidjani Rahmouni, N., el H. Bensiradj, N., Megatli, S.A., Djebbar, S., and Benali Baitich, O., Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, vol. 213, p. 235. https://doi.org/10.1016/j.saa.2019.01.042

    Article  CAS  PubMed  Google Scholar 

  7. Abas, M., Rafique, H., Shamas, S., Roshan, S., Ashraf, Z., Iqbal, Z., Raza, H., Hassan, M., Afzal, K., Rizvanov, A.A., and Asad, M.H.H.B., BioMed. Res. Int., 2020, vol. 2020, p. 1. https://doi.org/10.1155/2020/8104107

    Article  CAS  Google Scholar 

  8. Alyar, S., Özmen, Ü.Ö., Adem, Ş., Alyar, H., Bilen, E., and Kaya, K., J. Mol. Struct., 2021, vol. 1223, p. 128911. https://doi.org/10.1016/j.molstruc.2020.128911

    Article  CAS  Google Scholar 

  9. Bouzaheur, A., Bouchoucha, A., Si Larbi, K., and Zaater, S., J. Mol. Struct., 2022, vol. 1261, p. 132811. https://doi.org/10.1016/j.molstruc.2022.132811

    Article  CAS  Google Scholar 

  10. Bourouai, M.A., Si Larbi, K., Bouchoucha, A., Terrachet-Bouaziz, S., and Djebbar, S., Biometals, 2023, vol. 36, p. 153. https://doi.org/10.1007/s10534-022-00469-3

    Article  CAS  PubMed  Google Scholar 

  11. Abou–Melha, K.S., Al-Hazmi, G.A., Althagafi, I., Alharbi, A., Shaaban, F., El–Metwaly, N.M., El-Bindary, A.A., and El-Bindary, M.A., J. Mol. Liq., 2021, vol. 334, p. 116498. https://doi.org/10.1016/j.molliq.2021.116498

  12. Kerflani, A., Si Larbi, K., Rabahi, A., Bouchoucha, A., Zaater, S., and Terrachet-Bouaziz, S., Inorg. Chim. Acta, 2022, vol. 529, p. 120659. https://doi.org/10.1016/j.ica.2021.120659

    Article  CAS  Google Scholar 

  13. Pan, R.-K., Song, J.–L., Li, G.-B., Lu, C.-Y., and Liu, S.-G., Monatsh. Chem., 2019, vol. 150, p. 1453. https://doi.org/10.1007/s00706-019-02477-5

    Article  CAS  Google Scholar 

  14. Danish, M., Raza, M.A., Khalid, H., Iftikhar, U., and Arshad, M.N., Appl. Organomet. Chem., 2021, vol. 35, p. 1. https://doi.org/10.1002/aoc.6033

  15. Khan, M.S., Hayat, M.U., Khanam, M., Saeed, H., Owais, M., Khalid, M., Shahid, M., and Ahmad, M., J. Biomol. Struct., 2021, vol. 39, p. 4037. https://doi.org/10.1080/07391102.2020.1776156

  16. Elsamra, R.M.I., Masoud, M.S., and Ramadan, A.M., Sci. Rep., 2022, vol. 12, p. 20192. https://doi.org/10.1038/s41598-022-24512-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jungwirth, U., Kowol, C.R., Keppler, B.K., Hartinger, C.G., Berger, W., and Heffeter, P., Antioxid. Redox Signal., 2011, vol. 15, p. 1085. https://doi.org/10.1089/ars.2010.3663

    Article  CAS  PubMed  Google Scholar 

  18. Banti, C.N. and Hadjikakou, S.K., Eur. J. Inorg. Chem., 2016, vol. 2016, p. 3048. https://doi.org/10.1002/ejic.201501480

  19. Odabaşoğlu, M., Büyükgüngör, O., Turgut, G., Karadağ, A., Bulak, E., and Lönnecke, P., J. Mol. Struct., 2003, vol. 648, p. 133. https://doi.org/10.1016/S0022-2860(02)00720-2

    Article  CAS  Google Scholar 

  20. Mahmoud, M.R. and El-Haty, M.T., J. Inorg. Nucl. Chem., 1980, vol. 42, p. 349. https://doi.org/10.1016/0022-1902(80)80005-4

    Article  CAS  Google Scholar 

  21. Mostafa, A., and Bazzi, H.S., Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2009, vol. 74, p. 180. https://doi.org/10.1016/j.saa.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  22. Yenikaya, C., Poyraz, M., Sarı, M., Demirci, F., İlkimen, H., and Büyükgüngör, O., Polyhedron, 2009, vol. 28, p. 3526. https://doi.org/10.1016/j.poly.2009.05.079

    Article  CAS  Google Scholar 

  23. Mahmoud, W.H., Mohamed, G.G., and El-Dessouky, M.M.I., J. Mol. Struct., 2015, vol. 1082, p. 12. https://doi.org/10.1016/j.molstruc.2014.10.014

    Article  CAS  Google Scholar 

  24. Santi, E., Torre, M.H., Kremer, E., Etcheverry, S.B., and Baran, E.J., Vib. Spectrosc., 1993, vol. 5, p. 285. https://doi.org/10.1016/0924-2031(93)87004-D

    Article  CAS  Google Scholar 

  25. Tamasi, G., Serinelli, F., Consumi, M., Magnani, A., Casolaro, M., Cini, R., J. Inorg. Biochem., 2008, vol. 102, p. 1862. https://doi.org/10.1016/j.jinorgbio.2008.06.009

    Article  CAS  PubMed  Google Scholar 

  26. Darabi, F., Hadadzadeh, H., Ebrahimi, M., Khayamian, T., and Rudbari, H.A., Inorganica Chim. Acta, 2014, vol. 409, p. 379. https://doi.org/10.1016/j.ica.2013.09.035

    Article  CAS  Google Scholar 

  27. Melwanki, M.B., Seetharamappa, J., and Masli, S.P., Indian J. Chem. Sec. A, 2003, vol. 42, p. 576.

    Google Scholar 

  28. Tsiliki, P., Perdih, F., Turel, I., and Psomas, G., Polyhedron, 2013, vol. 53, p. 215. https://doi.org/10.1016/j.poly.2013.01.049

  29. Geary, W.J., Coord. Chem. Rev., 1971, vol. 7, p. 81. https://doi.org/10.1016/S0010-8545(00)80009-0

    Article  CAS  Google Scholar 

  30. Radecka-Paryzek, W. and Luks, E., Polyhedron, 1994, vol. 13, p. 899. https://doi.org/10.1016/S0277-5387(00)83007-7

  31. Quiroz-Castro, E., Bernès, S., Barba-Behrens, N., Tapia-Benavides, R., Contreras, R., and Nöth, H., Polyhedron, 2000, vol. 19, p. 1479. https://doi.org/10.1016/S0277-5387(00)00406-X

    Article  CAS  Google Scholar 

  32. West, D.X., Swearingen, J.K., Valdés–Martı́nez, J., Hernández-Ortega, S., El-Sawaf, A.K., van Meurs, F., Castiñeiras, A., Garcia, I., and Bermejo, E., Polyhedron, 1999, vol. 18, p. 2919. https://doi.org/10.1016/S0277-5387(99)00210-7

    Article  CAS  Google Scholar 

  33. Maeda, Y. and Okawara, R., J. Organomet. Chem., 1967, vol. 10, p. 247. https://doi.org/10.1016/S0022-328X(00)93084-5

  34. Shahid, K., Shahzadi, S., Ali, S., and Mazhar, M., Bull. Korean Chem. Soc., 2006, vol. 27, p. 44. https://doi.org/10.5012/BKCS.2006.27.1.044

    Article  CAS  Google Scholar 

  35. Chandra, S., and Sharma, A.K., Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2009, vol. 72, p. 851. https://doi.org/10.1016/j.saa.2008.12.022

    Article  CAS  PubMed  Google Scholar 

  36. Bouchoucha, A., Terbouche, A., Bourouina, A., Djebbar, S., Inorganica Chim. Acta, 2014, vol. 418, p. 187. https://doi.org/10.1016/j.ica.2014.04.016

  37. Moustafa, M.M., J. Thermal Anal., 1997, vol. 50, p. 463. https://doi.org/10.1007/BF01980506

    Article  CAS  Google Scholar 

  38. Bardakçı, T., Altun, A., Golcuk, K., and Kumru, M., J. Mol. Struct., 2015, vol. 1100, p. 475. https://doi.org/10.1016/j.molstruc.2015.07.021

    Article  CAS  Google Scholar 

  39. Masoud, M.S., Hindawy, A.M., and Soayed, A.A., Transit. Met. Chem., 1991, vol. 16, p. 372. https://doi.org/10.1007/BF01024086

    Article  CAS  Google Scholar 

  40. Mohamed, G.G. and Abd El-Wahab, Z.H., J. Therm. Anal. Cal., 2003, vol. 73, p. 347. https://doi.org/10.1023/A:1025126801265

  41. Mondal, N., Dey, D.K., Mitra, S., and Gramlich, V., Polyhedron, 2001, vol. 20, p. 607. https://doi.org/10.1016/S0277-5387(00)00615-X

    Article  CAS  Google Scholar 

  42. Kasumov, V.T., Kartal, I., and Koksal, F., Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2000, vol. 56, p. 841. https://doi.org/10.1016/S1386-1425(99)00179-1

    Article  CAS  PubMed  Google Scholar 

  43. Belaid, S., Landreau, A., Djebbar, S., Benali-Baitich, O., Bouet, G., and Bouchara, J.-P., J. Inorg. Biochem., 2008, vol. 102, p. 63. https://doi.org/10.1016/j.jinorgbio.2007.07.001

    Article  CAS  PubMed  Google Scholar 

  44. Kalanithi, M., Rajarajan, M., Tharmaraj, P., and Sheela, C.D., Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2012, vol. 87, p. 155. https://doi.org/10.1016/j.saa.2011.11.031

    Article  CAS  PubMed  Google Scholar 

  45. Timken, M.D., Hendrickson, D.N., and Sinn, E., Inorg. Chem., 1985, vol. 24, p. 3947. https://doi.org/10.1021/ic00217a050

  46. Sangeetha, N.R., Pal, C.K., Ghosh, P., and Pal, S., J. Chem. Soc., Dalton Trans., 1996, vol. 15, 3293. https://doi.org/10.1039/DT9960003293

  47. Sadaoui-Kacel, S., Zaater, S., Bensouilah, N., and Djebbar, S., J. Struct. Chem., 2016, vol. 57, p. 1519. https://doi.org/10.1134/S0022476616080059

    Article  CAS  Google Scholar 

  48. Ghosh, D., Bagchi, S., and Das, A.K., Mol. Phys., 2012, vol. 110, p. 37. https://doi.org/10.1080/00268976.2011.631506

    Article  CAS  Google Scholar 

  49. Bensouilah, N., and Abdaoui, M., C. R. Chim., 2012, vol. 15, p. 1022. https://doi.org/10.1016/j.crci.2012.09.004

    Article  CAS  Google Scholar 

  50. Chohan, Z.H., Pervez, H., Rauf, A., Khan, K.M., and Supuran, C.T., J. Enzyme Inhib. Med. Chem., 2004, vol. 19, p. 417. https://doi.org/10.1080/14756360410001710383

  51. Lamara, K.O., Makhloufi-Chebli, M., BenazzouzTouami, A., Terrachet-Bouaziz, S., Hamdi, N., Silva, A.M.S., and Behr, J.-B., J. Mol. Struct., 2021, vol. 1231, p. 129936. https://doi.org/10.1016/j.molstruc.2021.129936

    Article  CAS  Google Scholar 

  52. Vetrogon, V.I., Lukyanenko, N.G., Schwing-Weill, M.-J., and Arnaud-Neu, F., Talanta, 1994, vol. 41, p. 2105. https://doi.org/10.1016/0039-9140(94)00187-1

    Article  CAS  PubMed  Google Scholar 

  53. Becke, A.D., Phys. Rev. (A), 1988, vol. 38, p. 3098. https://doi.org/10.1103/PhysRevA.38.3098

  54. Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  55. Lee, C., Yang, W., and Parr, R.G., Phys. Rev. (B), 1988, vol. 37, p. 785. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  56. Miehlich, B., Savin, A., Stoll, H., and Preuss, H., Chem. Phys. Lett. 1989, vol. 157, p. 200. https://doi.org/10.1016/0009-2614(89)87234-3

  57. Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Montgomery, J., Vreven, T., Kudin, K., Burant, J., Millam, J., Iyengar, S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J., Hratchian, H., Cross, J., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R., Yazyev, O., Austin, A., Cammi, R., Pomelli, C., Ochterski, J., Ayala, P., Morokuma, K., Voth, G., Salvador, P., Dannenberg, J., Zakrzewski, V., Dapprich, S., Daniels, A., Strain, M., Farkas, O., Malick, D., Rabuck, A., Raghavachari, K., Foresman, J., Ortiz, J., Cui, Q., Baboul, A., Clifford, S., Cioslowski, J., Stefanov, B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R., Fox, D., Keith, T., Laham, A., Peng, C., Nanayakkara, A., Challacombe, M., Gill, P., Johnson, B., Chen, W., Wong, M., Gonzalez, C., and Pople, J., Gaussian 03, Revision C.02, 2003.

  58. Blois, M.S., Nature, 1958, vol. 181, p. 1199. https://doi.org/10.1038/1811199a0

    Article  CAS  Google Scholar 

  59. Campos, C., Guzmán, R., López–Fernández, E., and Casado, Á., Anal. Biochem., 2009, vol. 392, p. 37. https://doi.org/10.1016/j.ab.2009.05.024

    Article  CAS  PubMed  Google Scholar 

  60. de Ruyck, J., Brysbaert, G., Blossey, R., and Lensink, M., Adv. Appl. Bioinform. Chem., 2016, vol. 9, p. 1. https://doi.org/10.2147/AABC.S105289

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jakhar, R., Dangi, M., Khichi, A., and Chhillar, A.K., Curr. Bioinf., 2020, vol. 15, p. 270. https://doi.org/10.2174/1574893615666191219094216

    Article  CAS  Google Scholar 

  62. Hampele, I.C., D’Arcy, A., Dale, G.E., Kostrewa, D., Nielsen, J., Oefner, C., Page, M.G.P., Schönfeld, H.-J., Stüber, D., and Then, R.L., J. Mol. Biol., 1997, vol. 268, p. 21. https://doi.org/10.1006/jmbi.1997.0944

  63. Achari, A., Somers, D.O., Champness, J.N., Bryant, P.K., Rosemond, J., and Stammers, D.K., Nat. Struct. Mol. Biol., 1997, vol. 4, p. 490. https://doi.org/10.1038/nsb0697-490

    Article  CAS  Google Scholar 

  64. Davis, J.L., Equine Internal Medicine, New York: Saunders, 2018, p. 79. https://doi.org/10.1016/B978-0-323-44329-6.00002-4

  65. Vane, J.R. and Botting, R.M., Scand. J. Rheumatol., 1996, vol. 25, p. 9. https://doi.org/10.3109/03009749609097226

    Article  Google Scholar 

  66. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E., J. Comput. Chem., 2004, vol. 25, p. 1605. https://doi.org/10.1002/jcc.20084

  67. Moustakas, D.T., Lang, P.T., Pegg, S., Pettersen, E., Kuntz, I.D., Brooijmans, N., and Rizzo, R.C., J. Comput. Aided Mol. Des., 2006, vol. 20, p. 601. https://doi.org/10.1007/s10822-006-9060-4

    Article  CAS  PubMed  Google Scholar 

  68. Lang, P.T., Brozell, S.R., Mukherjee, S., Pettersen, E.F., Meng, E.C., Thomas, V., Rizzo, R.C., Case, D.A., James, T.L., and Kuntz, I.D., RNA, 2009, vol. 15, p. 1219. https://doi.org/10.1261/rna.1563609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Trott, O. and Olson, A.J., J. Comput. Chem., 2009, vol. 31, p. 454. https://doi.org/10.1002/jcc.21334

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Beddar.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beddar, K., Bouchoucha, A., Bourouai, M.A. et al. Transition Metal Complexes of 2-Aminopyridine Derivatives as Cyclooxygenase Inhibitors: Stability, Spectral, and Thermal Characterization, Electrochemical Behavior, DFT Calculations, Molecular Docking, and Biological Activities. Russ J Gen Chem 93, 2578–2599 (2023). https://doi.org/10.1134/S1070363223100134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223100134

Keywords:

Navigation