Skip to main content
Log in

Tuning the Dual-Color Fluorescence Emission of Nitrogen-Doped Carbon Dots by Changing Nitrogen Doping Amounts

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A series of nitrogen-doped photoluminescent carbon dots (N-doped CDs) with a proper quantum yield was prepared through microwave-assisted pyrolysis of citric acid and urea as the carbon and nitrogen sources, respectively. The obtained N-doped CDs were fully characterized by high-resolution transmission electron microscopy, elemental analysis, Fourier transform infrared spectroscopy, and X-ray diffraction pattern. The average size of the synthesized N-doped CDs was determined using high-resolution transmission electron microscopy analysis was approximately 7 nm and the interlayer distance was 0.29 nm, which was consistent with the results obtained by X-ray diffraction. The optical characteristics of the samples were determined by UV-Vis and photoluminescent spectroscopy. The aqueous solution of N-doped CDs showed a multicolor emission wavelength, in the range of 350 to 650 nm, dependent on the nitrogen-doped percentage. With increasing the nitrogen percentage, the emission spectra, depending on the excitation wavelength, have one or two peaks in the green and blue regions, which can be considered in applications such as special bioimaging and related fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Xu, X., Ray, R., Gu, Y., Ploehn, H.J., Gearheart, L., Raker, K., and Scrivens, W.A., J. Am. Chem. Soc., 2004, vol. 126, no. 40, p. 12736. https://doi.org/10.1021/ja040082h

    Article  CAS  PubMed  Google Scholar 

  2. Fernando, K.A.S., Sahu, S., Liu, Y., Lewis, W.K., Guliants, E.A., Jafariyan, A., Wang, P., Bunker, C.E., and Sun, Y.-P., ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 16, p. 8363. https://doi.org/10.1021/acsami.5b00448

    Article  CAS  PubMed  Google Scholar 

  3. Kong, T., Hao, L., Wei, Y., Cai, X., and Zhu, B., Cell. Prolif., 2018, vol. 51, no. 5, p. e12488. https://doi.org/10.1111/cpr.12488

  4. Wang, L., Lin, K., Trinchi, A., Cole, I.S., and Tian, F., Chem. Select., 2018, vol. 3, no. 42, p. 11791. https://doi.org/10.1002/slct.201802784

    Article  CAS  Google Scholar 

  5. Phadke, C., Mewada, A., Dharmatti, R., Thakur, M., Pandey, S., and Sharon, M., J. Fluor., 2015, vol. 25, p. 1103. https://doi.org/10.1007/s10895-015-1598-x

    Article  CAS  Google Scholar 

  6. Han, Y., Huang, H., Zhang, H., Liu, Y., Han, X., Liu, R., Li, H., and Kang, Z., Acs Catal., 2014, vol. 4, no. 3, p. 781. https://doi.org/10.1021/cs401118x

    Article  CAS  Google Scholar 

  7. Guo, X., Wang, C-F., Yu, Z-Y., Chena, L., and Chen, S., Chem. Commun., 2012, vol. 48, p. 2692. https://doi.org/10.1039/C2CC17769B

  8. Martins, N.C.T., Ângelo, J., Girão, A.V., Trindade, T., Andrade, L., and Mendes, A., Appl. Catal. B: Environ., 2016, vol. 193, p. 67. https://doi.org/10.1016/j.apcatb.2016.04.016

    Article  CAS  Google Scholar 

  9. Atchudan, R., Nesakumar, T.J.I.E., Aseer, K.R., Perumal, S., Karthik, N., and Lee, Y.R., Biosensor. Bioelectron., 2018, vol. 99, p. 303. https://doi.org/10.1016/j.bios.2017.07.076

    Article  CAS  Google Scholar 

  10. Wang, Y., Zhu, Y., Yu, S., and Jiang, C., RSC Adv., 2017, vol. 7, no. 65, p. 40973. https://doi.org/10.1039/C7RA07573A

    Article  CAS  Google Scholar 

  11. Zhili, P., Xu, H., Li, S., Al-Youbi, A.O., Bashammakh, A.S., El-Shahawi, M.S., and Leblanc, R.M., Coord. Chem. Rev., 2017, vol. 343, p. 256. https://doi.org/10.1016/j.ccr.2017.06.001

    Article  CAS  Google Scholar 

  12. Raveendran, V. and Kizhakayil, R.N., ACS Omega, 2021, vol. 6, no. 36, p. 23475. https://doi.org/10.1021/acsomega.1c03481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Atchudan, R., Edison, T.N.J.I., Sethuraman, M.G., and Lee, Y.R., Appl. Surf. Sci., 2016, vol. 384, p. 432. https://doi.org/10.1016/j.apsusc.2016.05.054

    Article  CAS  Google Scholar 

  14. Zhi, B., Gallagher, M.J., Frank, B.P., Lyons, T.Y., Qiu, T.A., Da, J., Mensch, A.C., Hamers, R.J., Rosenzweig, Z., Fairbrother, D.H., and Haynes, C.L., Carbon, 2018, vol. 129, p. 438. https://doi.org/10.1016/j.carbon.2017.12.004

    Article  CAS  Google Scholar 

  15. Dong, Y., Pang, H., Yang, H.B., Guo, C., Shao, J., Chi, Y., Li, C.M., and Yu, T., Angew. Chem., 2013, vol. 52, no. 30, p. 7800. https://doi.org/10.1002/anie.201301114

    Article  CAS  Google Scholar 

  16. Zhu, S., Meng, Q., Wang, L., Zhang, J., Song, Y., Jin, H., Zhang, K., Sun, H., Wang, H., and Yang, B., Angew. Chem., 2013, vol. 125, no. 14, p. 4045. https://doi.org/10.1002/ange.201300519

    Article  Google Scholar 

  17. Gong, X., Lu, W., Paau, M.C., Hu, Q., Wu, X., Shuang, S., Dong, C., and Choi, M.M.F., Anal. Chim. Acta, 2015, vol. 861, p. 74. https://doi.org/10.1016/j.aca.2014.12.045

  18. Sun, Y-P., Zhou, B., Lin, Y., Wang, W., Fernando, K.A.S., Pathak, P., Meziani, M.J., Harruff, B.A., Wang, X., Wang, H., Luo, P.G., Yang, H., Kose, M.E., Chen, B., Veca, L.M., and Xie, S.-Y., J. Am. Chem. Soc., 2006, vol. 128, no. 24, p. 7756. https://doi.org/10.1021/ja062677d

    Article  CAS  PubMed  Google Scholar 

  19. Qu, S., Wang, X., Lu, Q., Liu, X., and Wang, L., Angew. Chem. Int. Ed., 2012, vol. 51, no. 49, p. 12215. https://doi.org/10.1002/anie.201206791

    Article  CAS  Google Scholar 

  20. Rocco, D., Moldoveanu, V.G., Feroci, M., Bortolami, M., and Vetica, F., ChemElectroChem, 2023, vol. 10, no. 3, p. e202201104. https://doi.org/10.1002/celc.202201104

  21. Sun, X., Liu, Z., Welsher, K., Robinson, J.T., Goodwin, A., Zaric, S., and Dai, H., Nano Res., 2008, vol. 1, p. 203. https://doi.org/10.1007/s12274-008-8021-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Athanasios, B.B., Andreas, S., Demetrios, A., Radek, Z., Vasilios, G., and Emmanuel, P.G., Chem. Mater., 2008, vol. 20, no. 14, p. 4539. https://doi.org/10.1021/cm800506r

    Article  CAS  Google Scholar 

  23. Ma, Z., Ming, H., Huang, H., Liu, Y., and Kang, Z., New J. Chem., 2012, vol. 36, no. 4, p. 861. https://doi.org/10.1039/C2NJ20942J

    Article  CAS  Google Scholar 

  24. Li, W., Zhang, Z., Kong, B., Feng, S., Wang, J., Wang, L., Yang, J., Zhang, F., Wu, P., and Zhao, D., Angew. Chem. Int. Ed., 2013, vol. 52, no. 31, p. 8151. https://doi.org/10.1002/anie.201303927

    Article  CAS  Google Scholar 

  25. Huang, H., Lv, J.-J., Zhou, D-L., Bao, N., Xu, Y., Wang, A.-J., and Feng, J.-J., RSC Adv., 2013, vol. 3, no. 44, p. 21691. https://doi.org/10.1039/C3RA43452D

    Article  CAS  Google Scholar 

  26. Zhi, B., Yao, X.X., Cui, Y., Orr, G., and Haynes, C.L., Nanoscale, 2019, vol. 11, no, 43, p. 20411. https://doi.org/10.1039/C9NR05028K

    Article  CAS  PubMed  Google Scholar 

  27. Gan, Z., Xu, H., and Hao, Y., Nanoscale, 2016, vol. 8, no. 15, p. 7794. https://doi.org/10.1039/C6NR00605A

  28. Liu, T., Cui, Z.-W., Zhou, J., Wang, Y., and Zou, Z.-G., Nanoscale Res. Lett., 2017, vol. 12, p. 375. https://doi.org/10.1186/s11671-017-2149-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Arul, V. and Sethuraman, M.G., ACS Omega, 2019, vol. 4, no. 2, p. 3449. https://doi.org/10.1021/acsomega.8b03674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, Y., Zhou, L., Li, Y., Denga, R., and Zhang, H., Nanoscale, 2017, vol. 9, no. 2, p. 491. https://doi.org/10.1039/C6NR07123F

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, Y., Wang, Y., Feng, X., Zhang, F., Yang, Y., and Liu, X., Appl. Surf. Sci., 2016, vol. 387, p. 1236. https://doi.org/10.1016/j.apsusc.2016.07.048

  32. Song, H., Li, Y., Shang, L., Tang, Z., Zhang, T., and Lu, S., Nano Energy, 2020, vol. 72, p. 104730. https://doi.org/10.1016/j.nanoen.2020.104730

    Article  CAS  Google Scholar 

  33. Yuan, Y.H., Liu, Z.X., Li, R.S., Zou, H.Y., Lin, M., Liu, H., and Huang, C.Z., Nanoscale, 2016, vol. 8, p. 6770. https://doi.org/10.1039/C6NR00402D

    Article  CAS  PubMed  Google Scholar 

  34. Chen, S., Liu, J.-W., Chen, M.-L., Chen, X.-W., and Wang, J.-H., Chem. Commun., 2012, vol. 48, no. 61, p. 7637. https://doi.org/10.1039/C2CC32984K

    Article  CAS  Google Scholar 

  35. Liu, Y., Liu, Y., Park, S.J., Zhang, Y., Kim, T., Chae, S., Park, M., and Kim, H.-Y., J. Mater. Chem. (A), 2015, vol. 3, no. 34, p. 17747. https://doi.org/10.1039/C5TA05189D

    Article  CAS  Google Scholar 

  36. Mintz, K.J., Zhou, Y., and Leblanc, R.M., Nanoscale, 2019, vol. 11, p. 4634. https://doi.org/10.1039/C8NR10059D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sohal, N., Maity, B., and Basu, S., RSC Adv., 2021, vol. 11, no. 41, p. 25586. https://doi.org/10.1039/D1RA04248C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dinga, H. and Xiong, H-M., RSC Adv., 2015, vol. 5, no. 82, p. 66528. https://doi.org/10.1039/C5RA11796H

    Article  Google Scholar 

  39. Fu, C.C., Hsieh, C.T., Jung, R.S., Yang, J.W., Gu, S., and Yaser, A.G., J. Taiwan Inst. Chem. Eng., 2019, vol. 100, p. 127. https://doi.org/10.1016/j.jtice.2019.04.012

    Article  CAS  Google Scholar 

  40. Liu, W., Jia, H., Zhang, J., Tang, J., Wang, J., and Fang, D., Microchem. J., 2020, vol. 158, p. 105187. https://doi.org/10.1016/j.microc.2020.105187

    Article  CAS  Google Scholar 

  41. Crista, D.M.A., Esteves da Silva, J.C.G., and Pinto da Silva, P., Nanomaterials, 2020, vol. 10, no. 7, p. 1316. https://doi.org/10.3390/nano10071316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun, Z., Li, X., Wu, Y., Wei, C., and Zeng, H., New J. Chem., 2018, vol. 42, no. 6, p. 4603. https://doi.org/10.1039/C7NJ04562J

    Article  CAS  Google Scholar 

  43. Zhu, P., Tan, K., Xiong, J.C., and Gao, L., Chem. Mater., 2019, vol. 31, no. 13, p. 4625. https://doi.org/10.1021/acs.chemmater.9b00870

    Article  CAS  Google Scholar 

  44. Zhang, R. and Chen, W., Biosens. Bioelectron., 2014, vol. 55, p. 83. https://doi.org/10.1016/j.bios.2013.11.074

    Article  CAS  PubMed  Google Scholar 

  45. Bao, L., Zhang, Z-L., Tian, Z-Q., Zhang, L., Liu, C., Lin, Y., Qi, B., and Pang, D.-W., Adv. Mater., 2011, vol. 23, no. 48, p. 5801. https://doi.org/10.1002/adma.201102866

    Article  CAS  PubMed  Google Scholar 

  46. Hazarika, D. and Karak, N., Appl. Sur. Science, 2016, vol. 376, p. 276. https://doi.org/10.1016/j.apsusc.2016.03.165

    Article  CAS  Google Scholar 

  47. Würth, C., Grabolle, M., Pauli, J., Spieles, M., and Resch-Genger, U., Nat. Protoc., 2013, vol. 8, p. 1535. https://doi.org/10.1038/nprot.2013.087

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Arab.

Ethics declarations

The authors declared no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, R., Arab, A. & Manouchehri, S. Tuning the Dual-Color Fluorescence Emission of Nitrogen-Doped Carbon Dots by Changing Nitrogen Doping Amounts. Russ J Gen Chem 93, 2161–2170 (2023). https://doi.org/10.1134/S1070363223080248

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223080248

Keywords:

Navigation