Skip to main content
Log in

Charge-Transfer Complexes of Nitro Derivatives of 9,10-Phenanthrenequinone with 9-Methyl-9H-carbazole: Quantum Chemical Simulation and X-Ray Diffraction Study

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Basing on the quantum-chemical simulation in the framework of the density functional theory, the data on the structure and properties of the charge-transfer complexes of nitro derivatives of 9,10-phenanthrenequinone with 9-methyl-9H-carbazole have been obtained. The energy of the complexes formation, mean distances between the donor and acceptor planes, and the values of the charge transfer from the donor to the acceptor have been calculated. Crystal and molecular structure of the complex of 2,4,7-trinitro-9,10-phenanthrenequinone with 9-methyl-9H-carbazole has been elucidated by means of X-ray diffraction analysis. In the crystal of the complex, the donor and the acceptor molecules form parallel stacks of the mixed type {–D–A–D–A–} with interplanar distances 3.29 and 3.35 Å. Each molecule of the acceptor is involved in the intermolecular C–H···O 2.42–2.69 Å hydrogen bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Mulliken, W.B., Molecular Complexes, New York: Wiley-Interscience, 1969. https://doi.org/10.1016/0022-2860(71)87071-0

  2. Goetz, K.P., Vermeulen, D., Payne, M.E., Kloc, C., McNeil, L.E., and Jurchescu, O.D., J. Mater. Chem. C, 2014, vol. 2, no. 17, p. 3065. https://doi.org/10.1039/C3TC32062F

    Article  CAS  Google Scholar 

  3. Coleman, L.B., Cohen, M.J., Sandman, D.J., Yamagishi, F.G., Garito, A.F., and Heege, A.J., Solid State Commun., 1973, vol. 12, no. 11, p. 1125. https://doi.org/10.1016/0038-1098(73)90127-0

    Article  CAS  Google Scholar 

  4. Wosnitza, J., J. Low Temp. Phys., 2007, vol. 146, p. 641. https://doi.org/10.1007/s10909-006-9282-9

    Article  CAS  Google Scholar 

  5. Korshak, Yu.V., Medvedeva, T.V., Ovchinnikov, A.A., and Spector, V.N., Nature, 1987, vol. 326, p. 370. https://doi.org/10.1038/326370a0

    Article  CAS  Google Scholar 

  6. Menard, E., Podzorov, V., Hur, S.-H., Gaur, A., Gershenson, M.E., and Rogers, J.A., Adv. Mater., 2004, vol. 16, p. 2097. https://doi.org/10.1002/adma.200401017

    Article  CAS  Google Scholar 

  7. Mukherjee, B. and Mukherjee, M., Langmuir., 2011, vol. 27, p. 11246. https://doi.org/10.1021/la201780c

    Article  CAS  PubMed  Google Scholar 

  8. Otero, R., Gallego, J.M., Vasquez de Parga, A.L., Martin, N., and Miranda, R., Adv. Mater., 2011, vol. 23, p. 5148. https://doi.org/10.1002/adma.201102022

    Article  CAS  PubMed  Google Scholar 

  9. Suzuki, A., Ohtsuki, T., Oku, T., and Akiyama, T., Mater. Sci. Eng. B, 2012, vol. 177, p. 877. https://doi.org/10.1016/j.mseb.2012.03.052

    Article  CAS  Google Scholar 

  10. Shiraishi, M. and Ikoma, T., Physica (E), 2011, vol. 43, no. 7, p. 1295. https://doi.org/10.1016/j.physe.2011.02.010

    Article  CAS  Google Scholar 

  11. Starodub, V.A. and Starodub, T.N., Russ. Chem. Rev., 2014, vol. 83, no. 5, p. 391. https://doi.org/10.1070/RC2014v083n05ABEH004299

    Article  CAS  Google Scholar 

  12. Hu, P., Du, K., Wei, F., Jiang, H., and Kloc, C., Cryst. Growth Des., 2016, vol. 16, no. 5, p. 3019. https://doi.org/10.1021/acs.cgd.5b01675

    Article  CAS  Google Scholar 

  13. Singh, M. and Chopra, D., Cryst. Growth Des., 2018, vol. 18, no. 11, p. 6670. https://doi.org/10.1021/acs.cgd.8b00918

    Article  CAS  Google Scholar 

  14. Averkiev, B., Isaac, R., Jucov, E.V., Khrustalev, V.N., Kloc, C., McNeil, L.E., and Timofeeva, T.V., Cryst. Growth Des., 2018, vol. 18, no. 7, p. 4095. https://doi.org/10.1021/acs.cgd.8b00501

    Article  CAS  Google Scholar 

  15. Saito, G. and Murata, T., Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2008, vol. 366, p. 139. https://doi.org/10.1098/rsta.2007.2146

    Article  CAS  Google Scholar 

  16. Yee, N., Dadvand, A., Hamzehpoor, E., Titi, H.M., and Perepichka, D.F., Cryst. Growth Des., 2021, vol. 21, p. 2609. https://doi.org/10.1021/acs.cgd.1c00309

    Article  CAS  Google Scholar 

  17. Hoegl, H., Barchietto, G., and Tar, D., Photochem. Photobiol., 1972, vol. 16, p. 335. https://doi.org/10.1111/j.1751-1097.1972.tb06303.x

    Article  CAS  Google Scholar 

  18. Perepichka, I.F., Mysyk, D.D., and Sokolov, N.I., Synth. Metal., 1999, vol. 101, p. 9. https://doi.org/10.1016/S0379-6779(98)00630-4

    Article  CAS  Google Scholar 

  19. Browning, Ch., Hudson, J.M., Reinheimer, E.W., Kuo, F.-L., McDougald, R.N.Jr., Rabaâ, H., Pan, H., Bacsa, J., Wang, X., Dunbar, K.R., Shepherd, N.D., and Omary, M.A., J. Am. Chem. Soc., 2014, vol. 136, p. 16185. https://doi.org/10.1021/ja506583k

    Article  CAS  PubMed  Google Scholar 

  20. Bakulin, A.A., Martyanov, D., Paraschuk, D.Yu., van Loosdrecht, H.M.P., and Pshenichnikov, M.S., Chem. Phys. Lett., 2009, vol. 482, p. 99. https://doi.org/10.1016/j.cplett.2009.09.052

    Article  CAS  Google Scholar 

  21. Parashchuk, O.D., Bruevich, V.V., and Paraschuk, D.Yu., Phys. Chem. Chem. Phys., 2010, vol. 12, p. 6021. https://doi.org/10.1039/b927324g

    Article  CAS  PubMed  Google Scholar 

  22. Linko, R.V., Ryabov, M.A., Strashnov, P.V., Polyanskaya, N.A., Davydov, V.V., Dorovatovskii, P.V., Lin’ko, I.V., and Khrustalev, V.N., J. Struct. Chem., 2021, vol. 62, p. 137. https://doi.org/10.1134/S0022476621010169

    Article  CAS  Google Scholar 

  23. Linko, R., Ryabov, M., Strashnov, P., Dorovatovskii, P., Khrustalev, V., and Davydov, V., Molecules, 2021, vol. 26, no. 21, p. 6391. https://doi.org/10.3390/molecules26216391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Linko, R.V., Ryabov, M.A., Davydov, V.V., and Khrustalev, V.N., J. Struct. Chem., 2022, vol. 63, p. 1758. https://doi.org/10.1134/S0022476622110051

    Article  CAS  Google Scholar 

  25. Linko, R.V., Ryabov, M.A., Davydov, V.V., and Khrustalev, V.N., J. Struct. Chem., 2023, vol. 64, no. 8, pp. 1448–1460. https://doi.org/10.1134/S0022476623080097

    Article  CAS  Google Scholar 

  26. Hu, P., Wang, Sh., Chaturvedi, A., Wei, F., Zhu, X., Zhang, X., Li, R., Li, Y., Jiang, H., Long, Y., and Kloc, Ch., Cryst. Growth Des., 2018, vol. 18, p. 1776. https://doi.org/10.1021/acs.cgd.7b01669

    Article  CAS  Google Scholar 

  27. Gridunova, G.V., Shklover, V.E., Struchkov, Yu.T., Sidorenko, E.N., Andrievskii, A.M., Ezhkova, Z.I., and Dyumaev, K.M., Bull. Acad. Sci. USSR. Div. Chem. Sci., 1986, vol. 35, no. 6, p. 1163. https://doi.org/10.1007/BF00956588

    Article  Google Scholar 

  28. Jiang, W., Ma, X., Liu, D., Zhao, G., Tian, W., and Sun, Y., Dyes Pigmentent, 2021, vol. 193. Article no. 109519. https://doi.org/10.1016/j.dyepig.2021.109519

  29. Kato, S., Maezawa, M., Hirano, S., and Ishigaku, S., J. Synth. Org. Chem., Japan, 1957, vol. 15, no. 1, p. 29; C. A., 1958, vol. 51, p. 10462. https://doi.org/10.5059/yukigoseikyokaishi.15.29

    Article  CAS  Google Scholar 

  30. Mukherjee, T.K., J. Phys. Chem., 1967, vol. 71, no. 7, p. 2277. https://doi.org/10.1021/j100866a04818

    Article  CAS  Google Scholar 

  31. Andrievskii, A.M., Linko, R.V., and Grachev, M.K., Russ. J. Org. Chem., 2013, vol. 49, no. 7, p. 1025. https://doi.org/10.1134/S1070428013070117

    Article  CAS  Google Scholar 

  32. Bruker, SAINT, Bruker AXS Inc.: Madison, WI, 2013.

  33. Krause, L., Herbst-Irmer, R., Sheldrick, G.M., and Stalke, D., J. Appl. Cryst., 2015, vol. 48, p. 3. https://doi.org/10.1107/S1600576714022985

    Article  CAS  Google Scholar 

  34. Sheldrick, G.M., Acta Crystallogr. (C), 2015, vol. 71, p. 3. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  35. Boys, S.F. and Bernardi, F., Mol. Phys., 1970, vol. 19, no. 4, p. 553. https://doi.org/10.1080/00268977000101561

    Article  CAS  Google Scholar 

  36. Grimme, S., Ehrlich, S., and Goerigk, L., J. Comput. Chem., 2011, vol. 32, p. 1456. https://doi.org/10.1002/jcc.21759

    Article  CAS  PubMed  Google Scholar 

  37. Glendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E., Bohmann, J.A., and Morales, C.M., Weinhold F. NBO, 5.G. Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, 2004.

  38. Granovsky, A.A., Firefly version 8.20. http://classic.chem.msu.su/gran/firefly/index.html

Download references

Funding

This study was financially supported by the Program for Strategic Academic Leadership for RUDN University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Linko.

Ethics declarations

Authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linko, R.V., Ryabov, M.A., Davydov, V.V. et al. Charge-Transfer Complexes of Nitro Derivatives of 9,10-Phenanthrenequinone with 9-Methyl-9H-carbazole: Quantum Chemical Simulation and X-Ray Diffraction Study. Russ J Gen Chem 93, 1998–2010 (2023). https://doi.org/10.1134/S107036322308008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107036322308008X

Keywords:

Navigation