Skip to main content
Log in

Synthesis and Physicochemical Properties of Tin(IV), Zirconium(IV), and Hafnium(IV) 2(3),9(10),16(17),23(24)-Tetrakis-(4-tritylphenoxy)phthhalocyaninates

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Tetrakis-(4-tritylphenoxy)phthalocyaninates of tin(IV), zirconium(IV), and hafnium(IV) were synthesize by the reactions of 4-tritylphenoxyphthalonitrile with SnCl2, ZrCl4, and HfCl4 catalyzed by ammonium molybdate in the presence of urea. The structures of the complexes were characterized by spectral methods, including mass spectrometry, 1H NMR, vibrational and electronic spectroscopy. The resulting complexes form J-type dimeric associates in chloroform at concentrations up to ~1.5×10–6 M and lower, are not associated in a mixture of toluene and pyridine up to concentrations of ~3×10–5 M and higher, and show catalytic activity in the electroreduction of molecular oxygen. Zirconium and hafnium complexes showed the greatest activity. Tin and zirconium complexes are thermally stable in an inert atmosphere up to 200°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Yuan, S., Peng, J., Zhang, Y., Zheng, D.J., Bagi, S., Wang, T., Roman-Leshkov, Y., and Shao-Horn, Y., ACS Catal., 2022, vol. 12, no. 12, p. 7278. https://doi.org/10.1021/acscatal.2c00184

    Article  CAS  Google Scholar 

  2. Dickerson, S.D., Ayare, P.J., Vannucci, A.K., and Wiskur, S.L., J. Photochem. Photobiol. A, 2022, vol. 422, p. 113547. https://doi.org/10.1016/j.jphotochem.2021.113547

    Article  CAS  Google Scholar 

  3. Usol’tseva, N.V., Kazak, AV., Luk’yanov, I.Yu., Sotsky, V.V., Smirnova, A.I., Yudin, S.G., Shaposhnikov, G.P., and Galanin, N.E., Phase Trans., 2014, vol. 87, no. 8, p. 801. https://doi.org/10.1080/01411594.2014.893343

    Article  CAS  Google Scholar 

  4. Peng, J., Li, X., Liu, Y., Zhuge, W., Zhang, C., and Huang, Y., Sensors and Actuators B, 2022, vol. 360, p. 131619. https://doi.org/10.1016/j.snb.2022.131619

    Article  CAS  Google Scholar 

  5. Yahya, M., Nural, Y., and Seferoglu, Z., Dyes Pigm., 2022, vol. 198, Article 109960. https://doi.org/10.1016/j.dyepig.2021.109960

  6. Urbani, M., Ragoussi, M.-E., Nazeeruddin, M.K., and Torres, T., Coord. Chem. Rev., 2019, vol. 381, p. 1. https://doi.org/10.1016/j.ccr.2018.10.007

    Article  CAS  Google Scholar 

  7. Znoiko, S.A., Elizarova, A.P., Kustova, T.V., and Nakonechnaya, A.N., Chem.Chem.Tech., 2021, vol. 64, no. 4, p. 42. https://doi.org/10.6060/ivkkt.20216404.6380

    Article  CAS  Google Scholar 

  8. Solgun, D.G., Horoz, S., and Agirtas, M.S., Inorg. Nano-Met. Chem., 2018, vol. 48, no. 10, p. 508. https://doi.org/10.1080/24701556.2019.1572624

    Article  CAS  Google Scholar 

  9. Usol’tseva, N., Bykova, V., Ananjeva, G., Zharnikova, N., and Kudrik, E., Mol. Cryst. Liq. Cryst., 2004, vol. 411, no. 1, p. 329. https://doi.org/10.1080/15421400490435350

    Article  CAS  Google Scholar 

  10. Zharnikova, N., Usol’tseva, N., Kudrik, E., and Thelakkat, M., J. Mater. Chem., 2009, vol. 19, no. 20, p. 3161. https://doi.org/10.1039/b821306b

    Article  CAS  Google Scholar 

  11. Tretyakova, I.N., Chernii, V.Ya., Tomachynski, L.A., and Volkov, S.V., Dyes Pigm., 2007, vol. 75, no. 1, p. 67. https://doi.org/10.1016/j.dyepig.2006.05.013

    Article  CAS  Google Scholar 

  12. Chernii, V.Ya., Bon, V.V., Tretyakova, I.N., Severinovskaya, O.V., and Volkov, S.V., Dyes Pigm., 2012, vol. 94, no. 2, p. 187. https://doi.org/10.1016/j.dyepig.2011.12.012

    Article  CAS  Google Scholar 

  13. Gerasymchuk, Y.S., Chernii, V.Ya., Tomachynski, L.A., Legendziewicz, J., and Radzki, S., Opt. Mater., 2005, vol. 27, no. 9, p. 1484. https://doi.org/10.1016/j.optmat.2005.01.013

    Article  CAS  Google Scholar 

  14. Obaidulla, S.M., Goswami, D.K., and Giri, P.K., Appl. Phys. Lett., 2014, vol. 104, no. 21. Article 213302. https://doi.org/10.1063/1.4879015

  15. Song, D., Wang, H., Zhu, F., Yang, J., Tian, H., Geng, Y., and Yan, D., Adv. Mater., 2008, vol., 20, no. 11, p. 2142. https://doi.org/10.1002/adma.200702439

    Article  CAS  Google Scholar 

  16. Zhao, Y., Qi, S., Niu, Z., Peng, Y., Shan, C., Verma, G., Wojtas, L., Zhang, Z., Zhang, B., Feng, Y., Chen, Y.-S., and Ma, S., J. Am. Chem. Soc., 2019, vol. 141, no. 36, p. 14443. https://doi.org/10.1021/jacs.9b07700

    Article  CAS  PubMed  Google Scholar 

  17. Lv, N., Li, Q., Zhu, H., Mu, S., Luo, X., Ren, X., Liu, X., Li, S., Cheng, C., and Ma, T., Adv. Sci., 2023, vol. 10, no. 7, p. 2206239. https://doi.org/10.1002/advs.202206239

    Article  CAS  Google Scholar 

  18. Tverdova, N.V., Giricheva, N.I., Maizlish, V.E., Galanin, N.E., and Girichev, G.V., Int. J. Mol. Sci., 2022, vol. 23, no. 22. 13922. https://doi.org/10.3390/ijms232213922

  19. Kroenke, W.J., and Kenney, M.E., Inorg. Chem., 1964, vol. 3, no. 2, p. 251. https://doi.org/10.1021/ic50012a025

    Article  CAS  Google Scholar 

  20. Barrett, P.A., Dent, C.E., and Linstead, R.P., J. Chem. Soc., 1936, p. 1719. https://doi.org/10.1039/JR9360001719

  21. Tolbin,, A.Yu., Dzuban, A.V., Shestov, V.I., Gudkova, Y.I., Brel, V.K., Tomilova, L.G., and Zefirov, N.S., RSC Adv., 2015, vol. 5, no. 11, p. 8239. https://doi.org/10.1039/c4ra15239e

    Article  CAS  Google Scholar 

  22. Tolbin, A.Yu., Sheinin, V.B., Koifman, O.I., and Tomilova, L.G., Macroheterocycles, 2015, vol. 8, no. 2, p. 150. https://doi.org/10.6060/mhc150454t

    Article  Google Scholar 

  23. Tolbin, A.Yu., Pushkarev, V.E., Balashova, I.O., Dzuban, A.V., Tarakanov, P.A., Trashin, S.A., Tomilova, L.G., and Zefirov, N.S., New J. Chem., 2014, vol. 38, no. 12, p. 5825. https://doi.org/10.1039/c4nj00692e

    Article  CAS  Google Scholar 

  24. Huang, X., Zhao, F., Li, Z., Tang, Y., Zhang, F., and Tung, C.-H., Langmuir, 2007, vol. 23, no. 9, p. 5167. https://doi.org/10.1021/la062326c

    Article  CAS  PubMed  Google Scholar 

  25. Berezina, N.M., Klueva, M.E., and Bazanov, M.I., Macroheterocycles, 2017, vol. 10, no. 3, p. 308. https://doi.org/10.6060/mhc170507b

    Article  CAS  Google Scholar 

  26. Petrova, D.V., Semeikin, A.S., Berezina, N.M., Berezin, M.B., and Bazanov, M.I., Macroheterocycles, 2019, vol. 12, no. 2, p. 119. https://doi.org/10.6060/mhc190553s

    Article  CAS  Google Scholar 

  27. Do Ngoc Minh, Berezina, N.M., Bazanov, M.I., Semeikin, A.S., and Glazunov, A.V., Macroheterocycles, 2015, vol. 8, no. 1, p. 56. https://doi.org/10.6060/mhc140714b

    Article  Google Scholar 

  28. Filimonov, D.A., Alekseeva, S.V., Bazanov, M.I., Koifman, O.I., and Kokorin, M.S., Macroheterocycles, 2018, vol. 11, no. 1, p. 52. https://doi.org/10.6060/mhc151204b

    Article  CAS  Google Scholar 

  29. Peterson, M., Hunt, C., Wang, Z., Heinrich, S.E., Wu, G., and Menard, G., Dalton Trans., 2020, vol. 49, no. 45, p. 16268. https://doi.org/10.1039/D0DT01372B

    Article  CAS  PubMed  Google Scholar 

  30. Sakamoto, K., Ohno-Okumura, E., Kato, T., and Soga, H., J. Porph. Phthal., 2010, vol. 14, no. 1, p. 47. https://doi.org/10.1142/S1088424610001726

    Article  CAS  Google Scholar 

  31. Farajzadeh, N., Akyüz, D., Koca, A., and Kocak, M.B., Polyhedron, 2020, vol. 177. Article 114264. https://doi.org/10.1016/j.poly.2019.114264

  32. Omeroglu, I. and Biyiklioglu, Z., Turk. J. Chem., 2015, vol. 39, no. 2, p. 347. https://doi.org/10.3906/kim-1408-71

    Article  CAS  Google Scholar 

  33. Ou, Z., Zhan, R., Tomachynski, L.A., Chernii, V.Ya., and Kadish, K.M., Macroheterocycles, 2011, vol. 4, no. 3, p. 164.

    Article  Google Scholar 

  34. Bazanov, M.I., Petrov, A.V., Zhutaeva, G.V., Turchaninova, I.V., Andrievski, G., and Evseev, A.A., Russ. J. Electrochem., 2004, vol. 40, no. 11, p. 1198. https://doi.org/10.1023/B:RUEL.0000048654.68212.1e

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out within the framework of the state task for the implementation of research work (subject no. FZZW-2020-0010) using the equipment of the Center for Collective Use of the Ivanovo State University of Chemistry and Technology with the support of the Ministry of Education and Science of Russia (agreement no. 075-15-2021-671).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Galanin.

Ethics declarations

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rumyantseva, T.A., Vazanov, M.I. & Galanin, N.E. Synthesis and Physicochemical Properties of Tin(IV), Zirconium(IV), and Hafnium(IV) 2(3),9(10),16(17),23(24)-Tetrakis-(4-tritylphenoxy)phthhalocyaninates. Russ J Gen Chem 93, 1760–1766 (2023). https://doi.org/10.1134/S1070363223070174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223070174

Keywords:

Navigation