Skip to main content
Log in

Features of the Rheological Behavior of Starch Hydrogels Modified with Synthetic Latexes

  • Selected articles originally published in Russian in Rossiiskii Khimicheskii Zhurnal (Russian Chemistry Journal)
  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The rheological properties of starch-latex blends mechanically activated in a rotary-pulse apparatus were studied. Several integral criteria—flexibility, polarity and hydrophilicity of macromolecules, particle size and electrokinetic potential—were chosen to evaluate the effectiveness of starch modification with synthetic copolymer latexes. An increase in the blends viscosity was shown to observe for more flexible polymers Binder RA, Binder AF, Ruzin with a glass transition temperature (Tg) below 25°C. Polymers BAK-R and Aquapol with high values of the modulus E′ reduce viscosity. The hydrophilicity of synthetic copolymers and their particle size promote an increase in the blends viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Ahmed, T., Shahid, M., Azeem, F., Rasul, I., Shah, A.A., Noman, M., Hameed, A., Manzoor, N., Manzoor, I., and Muhammad, S., Environ. Sci. Pollut. Res., 2018, vol. 25, pp. 7287–7298. https://doi.org/10.1007/s11356-018-1234-9

    Article  CAS  Google Scholar 

  2. Jayasekara, R., Harding, I.H., Bowater, I., and Lonergan, G., J. Polym. Environ., 2005, vol. 13, pp. 231–251. https://doi.org/10.1007/s10924-005-4758-2

    Article  CAS  Google Scholar 

  3. Leja, K. and Lewandowicz, G., Pol. J. Environ. Stud., 2010, vol. 19, pp. 255–266.

    Google Scholar 

  4. Carvalho, A.J.F. in Monomers, Polymers and Composites from Renewable Resources, Belgacem, M.N. and Gandini, A., Eds., Elsevier: Science, 2008, pp. 321–342. https://doi.org/10.1016/B978-0-08-045316-3.00015-6

  5. Gandini, A., Lacerda, T.M., Carvalho, A.J., and Trovatti, E., Chem. Rev., 2016, vol. 116, pp. 1637–1669. https://doi.org/10.1021/acs.chemrev.5b00264

    Article  CAS  PubMed  Google Scholar 

  6. Yu, L., Dean, K., and Li, L., Prog. Polym. Sci., 2006, vol. 31, pp. 576–602. https://doi.org/10.1016/j.progpolymsci.2006.03.002

    Article  CAS  Google Scholar 

  7. Siracusa, V., Rocculi, P., Romani, S., and Rosa, M.D., Trends Food Sci. Technol., 2008, vol. 19, pp. 634–643. https://doi.org/10.1016/j.tifs.2008.07.003

    Article  CAS  Google Scholar 

  8. Tharanathan, R.N., Trends Food Sci. Technol., 2003, vol. 14, pp. 71–78. https://doi.org/10.1016/S0924-2244(02)00280-7

    Article  CAS  Google Scholar 

  9. Lipatova, I.M., Losev, N.V., Makarova, L.I., Rodicheva, J.A., and Burmistrov, V.A., Carbohydr. Polym., 2020, vol. 239, p. 116245. https://doi.org/10.1016/j.carbpol.2020.116245

    Article  CAS  PubMed  Google Scholar 

  10. Burmistrov, V.A., Lipatova, I.M., Tifonova, I.P., Losev, N.V., Rodicheva, J.A., and Koifman, O.I., Mater. Lett., 2022, p. 132502. https://doi.org/10.1016/j.matlet.2022.132502

  11. Tabasum, S., Younas, M., Zaeem, M.A., Majeed, I., Majeed, M., Noreen, A., Iqbal, M.N., and Zia, K.M., Int. J. Biol. Macromol., 2019, vol. 122, pp. 969–996. https://doi.org/10.1016/j.ijbiomac.2018.10.092

    Article  CAS  PubMed  Google Scholar 

  12. Kalambur, S. and Rizvi, S.S.H., J. Plast. Film Sheet, 2006, vol. 22, pp. 39–58. https://doi.org/10.1177/8756087906062729

    Article  CAS  Google Scholar 

  13. Averous, L., J. Macromol. Sci., Part C: Polym. Rev., 2004, vol. 44, pp. 231–274. https://doi.org/10.1081/MC-200029326

    Article  CAS  Google Scholar 

  14. Kalambur, S. and Rizvi, S.S.H., J. Appl. Polym. Sci., 2005, vol. 96, no. 4, pp. 1072–1082. https://doi.org/10.1002/app.21504

    Article  CAS  Google Scholar 

  15. Zhu, J., Li, L., Chen, L., and Li, X., Food Hydroloc., 2012, vol. 29, no. 1, pp. 116–122. https://doi.org/10.1016/j.foodhyd.2012.02.004

    Article  CAS  Google Scholar 

  16. Chen, P., Yu, L., Simon, G.P., Liu, X., Dean, K., and Chen, L., Carbohydr. Polym., 2011, vol. 83, no. 4, pp. 1975–1983. https://doi.org/10.1016/j.carbpol.2010.11.001

    Article  CAS  Google Scholar 

  17. Chen, X., Du, X., Chen, P., Guo, L., Xu, Y., and Zhou, X., Carbohydr. Polym., 2017, vol. 157, pp. 637–642. https://doi.org/10.1016/j.carbpol.2016.10.024

    Article  CAS  PubMed  Google Scholar 

  18. Fernga, L.-H., Chen, S.-H., and Lin, Y.-A., Procedia Food Sci., 2011, vol. 1, pp. 1295–1300. https://doi.org/10.1016/j.profoo.2011.09.192

    Article  CAS  Google Scholar 

  19. Pareta, R. and Edirisinghe, M.J., Carbohydr. Polym., 2006, vol. 63, pp. 425–431. https://doi.org/10.1016/j.carbpol.2005.09.018

    Article  CAS  Google Scholar 

  20. Zuo, Y.Y.J., Hebraud, P., Hemar, Y., and Ashokkumar, M., Ultrason. Sonochem., 2012, vol. 19, pp. 421–426. https://doi.org/10.1016/j.ultsonch.2011.08.006

    Article  CAS  PubMed  Google Scholar 

  21. Augustin, M.A., Sanguansri, P., and Htoon, A., Food Sci. Emerg. Technol., 2008, vol. 9, pp. 224–231. https://doi.org/10.1016/j.ifset.2007.11.003

    Article  CAS  Google Scholar 

  22. Jimenez, A., Fabra, M.J., Talens, P., and Chiralt, A., Carbohydr. Polym., 2012, vol. 89, pp. 676–686. https://doi.org/10.1016/j.carbpol.2012.03.075

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, J., Xu, S., and Li, W., Chem. Eng. Process, 2012, vols. 57–58, pp. 25–41. https://doi.org/10.1016/j.cep.2012.04.004

    Article  CAS  Google Scholar 

  24. Patil, P.N., Gogate, P.R., Csoka, L., Dregelyi-Kiss, A., and Horvath, M., Ultrason. Sonochem., 2016, vol. 30, pp. 79–86. https://doi.org/10.1016/j.ultsonch.2015.11.009

    Article  CAS  PubMed  Google Scholar 

  25. Scholz, P. and Keck, C.M., Int. J. Pharm., 2015, vol. 482, pp. 110–117. https://doi.org/10.1016/j.ijpharm.2014.12.040

    Article  CAS  PubMed  Google Scholar 

  26. Hall, S., Cooke, M., El-Hamouz, A., and Kowalski, A.J., Chem. Eng. Sci., 2011, vol. 66, pp. 2068–2079. https://doi.org/10.1016/j.ces.2011.01.054

    Article  CAS  Google Scholar 

  27. Losev, N.V. and Lipatova, I.M., Russ. J. Gen. Chem., 2018, vol. 88, pp. 356–361. https://doi.org/10.1134/S1070363218020287

    Article  CAS  Google Scholar 

  28. Promtov, M., Stepanov, A., Aleshin, A., and Kolesnikova, M., Chem. Eng. Res. Des., 2016, vol. 108, pp. 217–221. https://doi.org/10.1016/j.cherd.2016.03.013

    Article  CAS  Google Scholar 

  29. Bałdyga, J., Makowski, Ł., Orciuch, W., Sauter, C., and Schuchmann, H.P., Chem. Eng. Res. Des., 2008, vol. 86, pp. 1369–1381. https://doi.org/10.1016/j.cherd.2008.08.016

    Article  CAS  Google Scholar 

  30. Cano, A.I., Chafer, M., Chiralt, A., and GonzalezMartinez, C., J. Food Eng., 2015, vol. 167, pp. 59–64. https://doi.org/10.1016/j.jfoodeng.2015.06.003

    Article  CAS  Google Scholar 

  31. Losev, N.V. and Lipatova, I.M., Russ. J. Appl. Chem., 2010, vol. 83, pp. 1309–1313. https://doi.org/10.1134/S1070427210070268

    Article  CAS  Google Scholar 

  32. Rodgers, T.L. and Cooke, M., Chem. Eng. Res. Des., 2012, vol. 90, pp. 323–327. https://doi.org/10.1016/j.cherd.2011.07.018

    Article  CAS  Google Scholar 

  33. Badve, M.P., Alpar, T., Pandit, A.B., Gogate, P.R., and Csoka, L., Ultrason. Sonochem., 2015, vol. 22, pp. 272– 277. https://doi.org/10.1016/j.ultsonch.2014.05.017

    Article  CAS  PubMed  Google Scholar 

  34. Burmistrov, V.A., Lipatova, I.M., Rodicheva, J.A., Losev, N.V., Trifonova, I.P., and Koifman, O.I., Eur. Polym. J., 2019, vol. 120, p. 109209. https://doi.org/10.1016/j.eurpolymj.2019.08.036

    Article  CAS  Google Scholar 

  35. Malkin, A.Ya. and Isayev, A.I., Rheology. Concept, Methods, and Applications, Toronto: ChemTech Publishing, 2017, 3 ed.

  36. Loginova, M.E., Movsumzade, E.M., Chetvertneva, I.A., and Shammazov, A.M., Ross. Khim. Zh., 2022, vol. LXVI, no. 3, pp. 50–55. https://doi.org/10.6060/rcj.2022663.7

    Article  Google Scholar 

  37. Kirsanov, E.A. and Matveenko, V.N., Non-Newtonian behavior of Structured Systems, Moscow: TECHNOSPHERE, 2016.

Download references

Funding

The work was carried out under government contracts (study of modifiers (Subject No. FZZW-2023-0009), study of rheology (Subject No. 01201260484)). The size and electrokinetic potential were determined using the equipment of the Center for Collective Use “Upper Volga Regional Center for Physical and Chemical Research.” Dynamic mechanical analysis was performed using the resources of the Center for the Collective Use of Scientific Equipment of the ISUCT (with the support of the Russian Ministry of Education and Science, agreement no. 075-15-2021-671).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. P. Trifonova or I. M. Lipatova.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trifonova, I.P., Burmistrov, V.A., Losev, N.V. et al. Features of the Rheological Behavior of Starch Hydrogels Modified with Synthetic Latexes. Russ J Gen Chem 93, 1591–1598 (2023). https://doi.org/10.1134/S1070363223060336

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223060336

Keywords:

Navigation