Skip to main content
Log in

Electronic Absorption, Emission Spectral, and Electrochemical Studies of [Cu(OBTTAP)] Linked (bpy)2RuII, (phen)2RuII, and (PPh3)CpRuII Complexes

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Three new dinuclear complexes [{Cu(OBTTAP)}{Ru(bpy)2}][PF6]2, [{Cu(OBTTAP)}{Ru(phen)2}]· [PF6]2, and [{Cu(OBTTAP)}{RuCp(PPh3)}][PF6], and three pentanuclear complexes [{Cu(OBTTAP)}{Ru(bpy)2}4]· [PF6]8, [{Cu(OBTTAP)}{Ru(phen)2}4][PF6]8, and [{Cu(OBTTAP)}{RuCp(PPh3)}4][PF6]4 were synthesized by dative binding of (bpy)2RuII, (phen)2RuII and (PPh3)CpRuII moieties to periphery of the [Cu(OBTTAP)] 1. Their structures were characterized using IR, 1H NMR, UV-Vis, and MALDI-TOF mass spectral data. The peripheral Ru(II) binding caused a hypsochromic shift in the Q-band absorption of the [Cu(OBTTAP)] core while the bathochromic shift to the Soret absorption. They all exhibit a strong emission near λmax = 425 nm. The excitation profile of this emission shows its origin to Soret absorption. In the cyclic voltammetry, they exhibit multiple reversible oxidation waves due to Ru(II)/Ru(III) and OBTTAP/OBTTAP+ processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Schramm, C.J., and Hoffman, B.M., Inorg. Chem., 1980, vol. 19, no. 2, p. 383. https://doi.org/10.1021/ic50204a020

    Article  CAS  Google Scholar 

  2. Kobayashi, N., Coord. Chem. Rev., 2002, vol. 227, no. 2, p. 129. https://doi.org/10.1016/s0010-8545(02)00010-3

  3. Wang, M., Murata, K., and Ishii, K., Chem. Eur. J., 2021, vol. 27, no. 35, p. 8994. https://doi.org/10.1016/s0010-8545(02)00010-3

  4. Belviso, S., Marsico, G., Franzini, R., and Villani, C., Dalton Trans., 2022, vol. 51, no. 43, p. 16453. https://doi.org/10.1039/d2dt02665a

    Article  CAS  PubMed  Google Scholar 

  5. Valkova, L., Borovkov, N., Kopranenkov, V., Pisani, M., Bossi, M., and Rustichelli, F., Mater. Sci. Eng. C, 2002, vol. 22, no. 2, p. 167. https://doi.org/10.1016/s0928-4931(02)00166-2

    Article  Google Scholar 

  6. Basova, T.V., Taşaltin, C., Gürek, A.G., Ebeoğlu, M.A., Öztürk, Z.Z., and Ahsen, V., Sens. Actuat. (B), 2003, vol. 96, p. 70. https://doi.org/10.1016/s0925-4005(03)00487-8

    Article  CAS  Google Scholar 

  7. Valkova, L., Borovkov, N., Maccioni, E., Pisani, M., Rustichelli, F., Erokhin, V., Patternolli, C., and Nicolini, C., Colloids Surf. A: Physicochem. Eng. Asp., 2002, vols. 198–200, p. 891. https://doi.org/10.1016/s0927-7757(01)01016-0

    Article  Google Scholar 

  8. Valkova, L., Borovkov, N., Pisani, M., and Rustichelli, F., Thin Solid Films, 2001, vol. 401, p. 267. https://doi.org/10.1016/s0040-6090(01)01475-4

    Article  CAS  Google Scholar 

  9. Wang, X., Zhang, S., and Zhao, B., Spectrochim. Acta (A), 2020, vol. 227, p. 117699. https://doi.org/10.1016/j.saa.2019.117699

    Article  CAS  Google Scholar 

  10. Bonosi, F., Ricciardi, G., and Lelj, F., Thin Solid Films, 1994, vol. 243, p. 310. https://doi.org/10.1016/0040-6090(93)04174-q

    Article  CAS  Google Scholar 

  11. Toyama, M.M., Demets, G.J.F., Araki, K., and Toma, H.E., Electrochem. Commun., 2000, vol. 2, no. 11, p. 749. https://doi.org/10.1016/s1388-2481(00)00114-4

    Article  CAS  Google Scholar 

  12. Van Nostrum, C.F., and Nolte, R.J.M., Chem. Commun., 1996, no. 21, p. 2385. https://doi.org/10.1039/cc9960002385

    Article  Google Scholar 

  13. Sakaguchi, H., Iwata, F., Hirai, A., Sasaki, A., and Nagamura, T., Jap. J. Appl. Phys., 1999, vol. 38, p. 3908. https://doi.org/10.1143/jjap.38.3908

    Article  CAS  Google Scholar 

  14. Hanack, M., Dürr, K., Lange, A., Osío Barcina, J., Pohmer, J., and Witke, E., Synth. Met., 1995, vol. 71, p. 2275. https://doi.org/10.1016/0379-6779(94)03256-6

    Article  CAS  Google Scholar 

  15. Shirai, H., Takemae, Y., Kobayashi, K., Kondo, Y., Hirabaru, O., and Hojo, N., Die Makromol. Chemie, 1984, vol. no. 7, 185, p. 1395. https://doi.org/10.1002/macp.1984.021850711

    Article  Google Scholar 

  16. Prasad, R. and Kumar, A., J. Electroanal. Chem., 2005, vol. 576, no. 2, p. 295. https://doi.org/10.1016/j.jelechem.2004.11.004

    Article  CAS  Google Scholar 

  17. Kumar, A., Prasad, R., and Gupta, V., Comb. Chem. High. Thor. Scr., 2004, vol. 7, no. 4, p. 367. https://doi.org/10.2174/1386207043328779

    Article  Google Scholar 

  18. Prasad, R., Gupta, V.K., and Kumar, A., Anal. Chim. Acta, 2004, vol. 508, no. 1, p. 61. https://doi.org/10.1016/j.aca.2003.11.056

    Article  CAS  Google Scholar 

  19. Gupta, V.K., Prasad, R., and Kumar, A., Talanta, 2004, vol. 63, no. 4, p.1027. https://doi.org/10.1016/j.talanta.2004.01.012

    Article  CAS  PubMed  Google Scholar 

  20. Prasad, R., Kumar, R., and Prasad, S., Anal. Chim. Acta, 2009, vol. 646, p. 97. https://doi.org/10.1016/j.aca.2009.04.046

    Article  CAS  PubMed  Google Scholar 

  21. Montalban, A.G., Steinke, J.H.G., Anderson, M.E., Barrett, A.G.M., and Hoffman, B.M., Tetrahedron Lett., 1999, vol. 40, no. 46, p. 8151. https://doi.org/10.1016/s0040-4039(99)01680-9

    Article  CAS  Google Scholar 

  22. Dailey, K.K., Rauchfuss, T.B., Yap, G.P.A., and Rheingold, A.L., Angew. Chem., Int. Ed. Engl., 1996, vol. 35, no. 16, p. 1833. https://doi.org/10.1002/anie.199618331

    Article  Google Scholar 

  23. Donzello, M.P., Ou, Z., Dini, D., Meneghetti, M., Ercolani, C., and Kadish, K.M., Inorg. Chem., 2004, vol. 43, no. 26, p. 8637. https://doi.org/10.1021/ic0489084

    Article  CAS  PubMed  Google Scholar 

  24. Donzello, M.P., Dini, D., D’Arcangelo, G., Ercolani, C., Zhan, R., Ou, Z., Stuzhin, P.A., and Kadish, K.M., J. Am. Chem. Soc., 2003, vol. 125, no. 46, p. 14190. https://doi.org/10.1021/ja0344361

    Article  CAS  PubMed  Google Scholar 

  25. Nalwa, H.S., Hanack, M., Pawlowski, G., and Engel, M.K., Chem. Phys., 1999, vol. 245, p. 17. https://doi.org/10.1016/s0301-0104(99)00145-7

    Article  CAS  Google Scholar 

  26. Fernández-Lázaro, F., Angeles Díaz-García, M., Sastre, Á., Delhaès, P., Mingotaud, C., Agulló-López, F., and Torres, T., Synth. Met., 1998, vol. 93, no. 3, p. 213. https://doi.org/10.1016/s0379-6779(97)04168-4

    Article  Google Scholar 

  27. Reimers, J.R., Lü, T.X., Crossley, M.J., and Hush, N.S., Chem. Phys. Lett., 1996, vol. 256, p. 353. https://doi.org/10.1016/0009-2614(96)00435-6

    Article  CAS  Google Scholar 

  28. Öztürk, R. and Gül, A., Tetrahedron Lett., 2004, vol. 45, no. 5, p. 947. https://doi.org/10.1016/j.tetlet.2003.11.097

    Article  CAS  Google Scholar 

  29. Crossley, M.J., Burn, P.L., Langford, S.J., and Prashar, J.K., J. Chem. Soc., Chem. Commun., 1995, no. 18, p. 1921. https://doi.org/10.1039/c39950001921

    Article  Google Scholar 

  30. Tomiyama, T., Watanabe, I., Kuwano, A., Habiro, M., Takane, N., and Yamada, M., Appl. Opt., 1995, vol. 34, no. 35, p. 8201. https://doi.org/10.1364/ao.34.008201

    Article  CAS  PubMed  Google Scholar 

  31. Dürr, H., Hayo, R., David, E., Willner, I., and Zahavy, E., Recl. Trav. Chim. Pays-Bas., 1995, vol. 114, p. 549. https://doi.org/10.1002/recl.19951141121

    Article  Google Scholar 

  32. Abdul-Ghani, A.J. and Abdul-Kareem, S., J. Photochem. Photobiol. (A), 1990, vol. 51, no. 3, p. 391. https://doi.org/10.1016/1010-6030(90)87073-k

    Article  CAS  Google Scholar 

  33. Kandela, I.K., McAuliffe, K.J., Cochran, L.E., Barrett, A.G.M., Hoffman, B.M., Mazar, A.P., and Trivedi, E.R., ACS Med. Chem. Lett., 2017, vol. 8, no. 7, p. 705. https://doi.org/10.1021/acsmedchemlett.7b00063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ali, H. and van Lier, J.E., Chem. Rev., 1999, vol. 99, no. 9, p. 2379. https://doi.org/10.1021/cr980439y

    Article  CAS  PubMed  Google Scholar 

  35. Freyer, W., Stiel, H., Teuchner, K., and Leupold, D., J. Photochem. Photobiol. (A), 1994, vol. 80, p. 161. https://doi.org/10.1016/1010-6030(94)01051-x

    Article  CAS  Google Scholar 

  36. Lee, S., White, A.J.P., Williams, D.J., Barrett, A.G.M., and Hoffman, B.M., J. Org. Chem., 2001, vol. 66, no. 2, p. 461. https://doi.org/10.1021/jo001220y

    Article  CAS  PubMed  Google Scholar 

  37. Morgan, A., Petousis, N., and van Lier, J., Eur. J. Med. Chem., 1997, vol. 32, no. 1, p. 21. https://doi.org/10.1016/s0223-5234(97)84358-9

    Article  CAS  Google Scholar 

  38. Teuchner, K., Pfarrherr, A., Stiel, H., Freyer, W., and Leupold, D., Photochem. Photobiol., 1993, vol. 57 ,no. 3, p. 465. https://doi.org/10.1111/j.1751-1097.1993.tb02320.x

    Article  CAS  PubMed  Google Scholar 

  39. Margaron, P., Langlois, R., van Lier, J.E., and Gaspard, S., J. Photochem. Photobiol. (B), 1992, vol. 14, no. 3, p. 187. https://doi.org/10.1016/1011-1344(92)85097-e

  40. Vzorov, A.N., Marzilli, L.G., Compans, R.W., and Dixon, D.W., Antivir. Res., 2003, vol. 59, no. 2, p. 99. https://doi.org/10.1016/s0166-3542(03)00035-4

    Article  CAS  PubMed  Google Scholar 

  41. Ben-Hur, E., Oetjen, J., and Horowitz, B., Photochem. Photobiol., 1997, vol. 65, no. 3, p. 456. https://doi.org/10.1111/j.1751-1097.1997.tb08589.x

    Article  CAS  PubMed  Google Scholar 

  42. Zmudzka, B.Z., Strickland, A.G., Beer, J.Z., and Ben-Hur, E., Photochem. Photobiol., 1997, vol. 65, no. 3, p. 461. https://doi.org/10.1111/j.1751-1097.1997.tb08590.x

    Article  CAS  PubMed  Google Scholar 

  43. Neurath, A.R., Strick, N., and Debnath, A.K., J. Mol. Recognit., 1995, vol. 8, no. 6, p. 345. https://doi.org/10.1002/jmr.300080604

    Article  CAS  PubMed  Google Scholar 

  44. Neurath, A.R., Strick, N., and Jiang, S., Antivir. Chem. Chemother., 1993, vol. 4, no. 4, p. 207. https://doi.org/10.1177/095632029300400403

    Article  CAS  Google Scholar 

  45. Rywkin, S., Ben-Hur, E., Malik, Z., Prince, A.M., Li, Y.-S., Kenney, M.E., Oleinick, N.L., and Horowitz, B., Photochem. Photobiol., 1994, vol. 60, no. 2, p. 165. https://doi.org/10.1111/j.1751-1097.1994.tb05085.x

    Article  CAS  PubMed  Google Scholar 

  46. Sattentau, Q.J. and Moore, J.P., J. Exp. Med., 1991, vol. 174, no. 2, p. 407. https://doi.org/10.1084/jem.174.2.407

    Article  CAS  PubMed  Google Scholar 

  47. Moor, A.C.E., Wagenaars-van Gompel, A.E., Hermanns, R.C.A., van der Meulen, J., Smit, J., Wilschut, J., Brand, A., Dubbelman, T.M.A.R., and VanSteveninck, J., Photochem. Photobiol., 1999, vol. 69, no. 3, p. 353. https://doi.org/10.1562/0031-8655(1999)069%3C0353:iovsit%3E2.3.co;2

    Article  CAS  PubMed  Google Scholar 

  48. Gaspard, S., Tempête, C., and Werner, G.H., J. Photochem. Photobiol. (B), 1995, vol. 31, no. 3, p. 159. https://doi.org/10.1016/1011-1344(95)07198-9

    Article  CAS  PubMed  Google Scholar 

  49. Michel, S.L.J., Hoffman, B.M., Baum, S.M., and Barrett, A.G.M., Progr. Inorg. Chem., 2002, vol. 50, p. 473. https://doi.org/10.1002/0471227110.ch8

    Article  Google Scholar 

  50. Zhao, M., Zhong, C., Stern, C., Barrett, A.G.M., and Hoffman, B.M., Inorg. Chem., 2004, vol. 43, p. 3377. https://doi.org/10.1021/ic035402x

    Article  CAS  PubMed  Google Scholar 

  51. Zhong, C., Zhao, M., Goslinski, T., Stern, C., Barrett, A.G.M., and Hoffman, B.M., Inorg. Chem., 2006, vol. 45, no. 10, p. 3983. https://doi.org/10.1021/ic052169p

    Article  CAS  PubMed  Google Scholar 

  52. Trivedi, E.R., Ma, Z., Waters, E.A., Macrenaris, K.W., Subramanian, R., Barrett, A.G.M., Meade, T.J., and Hoffman, B.M., Contrast Media & Molecular Imaging, 2014, vol. 9, no. 4, p. 313. https://doi.org/10.1002/cmmi.1577

    Article  CAS  Google Scholar 

  53. Lange, S.J., Nie, H., Stern, C.L., Barrett, A.G.M., and Hoffman, B.M., Inorg. Chem., 1998, vol. 37, no. 25, p. 6435. https://doi.org/10.1021/ic980791u

    Article  CAS  PubMed  Google Scholar 

  54. Michel, S.L.J., Barrett, A.G.M., and Hoffman, B.M., Inorg. Chem., 2003, vol. 42, no. 3, p. 814. https://doi.org/10.1021/ic025639d

    Article  CAS  PubMed  Google Scholar 

  55. Lange, S.J., Sibert, J.W., Barrett, A.G.M., and Hoffman, B.M., Tetrahedron, 2000, vol. 56, no. 38, p. 7371. https://doi.org/10.1016/s0040-4020(00)00615-3

    Article  CAS  Google Scholar 

  56. van Nostrum, C.F., Benneker, F.B.G., Brussaard, H., Kooijman, H., Veldman, N., Spek, A.L., Schoonman, J., Feiters, M.C., and Nolte, R.J.M., Inorg. Chem., 1996, vol. 35, no. 4, p. 959. https://doi.org/10.1021/ic950704n

    Article  CAS  PubMed  Google Scholar 

  57. Michel, S.L.J., Goldberg, D.P., Stern, C., Barrett, A.G.M., and Hoffman, B.M., J. Am. Chem. Soc., 2001, vol. 123, no. 20, p. 4741. https://doi.org/10.1021/ja003702x

    Article  CAS  PubMed  Google Scholar 

  58. Sibert, J.W., Baumann, T.F., Williams, D.J., White, A.J.P., Barrett, A.G.M., and Hoffman, B.M., J. Am. Chem. Soc., 1996, vol. 118, no. 43, p. 10487. https://doi.org/10.1021/ja961912x

    Article  CAS  Google Scholar 

  59. Velazquez, C.S., Baumann, T.F., Olmstead, M.M., Hope, H., Barrett, A.G.M., and Hoffman, B.M., J. Am. Chem. Soc., 1993, vol. 115, no. 22, p. 9997. https://doi.org/10.1021/ja00075a016

    Article  CAS  Google Scholar 

  60. Baumann, T.F., Nasir, M.S., Sibert, J.W., White, A.J.P., Olmstead, M.M., Williams, D.J., Barrett, A.G.M., and Hoffman, B.M., J. Am. Chem. Soc., 1996, vol. 118, no. 43, p. 10479. https://doi.org/10.1021/ja9619115

    Article  CAS  Google Scholar 

  61. Baumann, T.F., Sibert, J.W., Olmstead, M.M., Barrett, A.G.M., and Hoffman, B.M., J. Am. Chem. Soc., 1994, vol. 116, no. 6, p. 2639. https://doi.org/10.1021/ja00085a062

    Article  CAS  Google Scholar 

  62. Velazquez, C.S., Broderick, W.E., Sabat, M., Barrett, A.G.M., and Hoffman, B.M., J. Am. Chem. Soc., 1990, vol. 112, no. 20, p. 7408. https://doi.org/10.1021/ja00176a059

    Article  CAS  Google Scholar 

  63. Prasad, R. and Kumar, A., Transit. Mat. Chem., 2004, vol. 29, no. 7, p. 714. https://doi.org/10.1007/s11243-004-0385-3

  64. Prasad, R., J. Organomet. Chem., 1995, vol. 486, p. 31. https://doi.org/10.1016/0022-328x(94)05034-9

    Article  CAS  Google Scholar 

  65. Prasad, R., Polyhedron, 1995, vol. 14, p. 2151. https://doi.org/10.1016/0277-5387(95)00008-g

    Article  CAS  Google Scholar 

  66. Mack, J. and Stillman, M.J., Coord. Chem. Rev., 2001, vol. 219–221, p. 993. https://doi.org/10.1016/s0010-8545(01)00394-0

    Article  Google Scholar 

  67. Baerends, E.J., Ricciardi, G., Rosa, A., and van Gisbergen, S.J.A., Coord. Chem. Rev., 2002, vol. 230, p. 5. https://doi.org/10.1016/s0010-8545(02)00093-0

    Article  CAS  Google Scholar 

  68. Schaffer, A.M., Gouterman, M., and Davidson, E.R., Theor. Chim. Acta, 1973, vol. 30, no. 1, p. 9. https://doi.org/10.1007/bf00527632

    Article  CAS  Google Scholar 

  69. Carniato, S., Dufour, G., Rochet, F., Roulet, H., Chaquin, P., and Giessner-Prettre, C., J. Electron Spectrosc. Relat. Phenom., 1994, vol. 67, no. 1, p. 189. https://doi.org/10.1016/0368-2048(93)02023-f

    Article  CAS  Google Scholar 

  70. Rubio, N., Prat, F., Bou, N., Borrell, J.I., Teixidó, J., Villanueva, Á., Juarranz, Á., Cañete, M., Stockert, J.C., and Nonell, S., New J. Chem., 2005, vol. 29, no. 2, p. 378. https://doi.org/10.1039/b415314f

    Article  CAS  Google Scholar 

  71. Flamigni, L., Talarico, A.M., Chambron, J.-C., Heitz, V., Linke, M., Fujita, N., and Sauvage, J.-P., Chem. A Eur. J., 2004, vol. 10, no. 11, p. 2689. https://doi.org/10.1002/chem.200305655

    Article  CAS  Google Scholar 

  72. Poddutoori, P.K., Poddutoori, P., and Maiya, B.G., J. Porphyr. Phthalocyan., 2006, vol. 10, no. 8, p. 1049. https://doi.org/10.1142/s1088424606000405

    Article  CAS  Google Scholar 

  73. Inamo, M., Kamiya, N., Inada, Y., Nomura, M., and Funahashi, S., Inorg. Chem., 2001, vol. 40, no. 22, p. 5636. https://doi.org/10.1021/ic010162b

    Article  CAS  PubMed  Google Scholar 

  74. Venturi, M., Marchioni, F., Balzani, V., Opris, D.M., Henze, O., and Schlüter, A.D., Eur. J. Org. Chem., 2003, vol. 21, p. 4227. https://doi.org/10.1002/ejoc.200300384

    Article  CAS  Google Scholar 

  75. Prodi, A., Kleverlaan, C.J., Indelli, M.T., Scandola, F., Alessio, E., and Iengo, E., Inorg. Chem., 2001, vol. 40, no. 14, p. 3498. https://doi.org/10.1021/ic0101331

    Article  CAS  PubMed  Google Scholar 

  76. Prodi, A., Indelli, M.T., Kleverlaan, C.J., Alessio, E., Scandola, F., Coord. Chem. Rev., 2002, vol. 229, p. 51. https://doi.org/10.1016/s0010-8545(02)00107-8

    Article  CAS  Google Scholar 

  77. Balzani, V., and Scandola, F., Compr. Supramol. Chem., 1996, vol. 10, p. 687.

    CAS  Google Scholar 

  78. Harriman, A., Hissler, M., Trompette, O., and Ziessel, R., J. Am. Chem. Soc., 1999, vol. 121, no. 11, p. 2516. https://doi.org/10.1021/ja982300a

    Article  CAS  Google Scholar 

  79. Fukuzumi, S., Okamoto, K., Gros, C.P., and Guilard, R., J. Am. Chem. Soc., 2004, vol. 126, no. 33, p. 10441. https://doi.org/10.1021/ja048403c

  80. Winnischofer, H., Otake, V.Y., Dovidauskas, S., Nakamura, M., Toma, H.E., and Araki, K., Electrochim. Acta, 2004, vol. 49, p. 3711. https://doi.org/10.1016/j.electacta.2003.12.052

    Article  CAS  Google Scholar 

  81. Inaba, Y. and Kobuke, Y., Tetrahedron, 2004, vol. 60, no. 13, p. 3097. https://doi.org/10.1016/j.tet.2004.01.066

    Article  CAS  Google Scholar 

  82. Sun, H., Smirnov, V.V., and DiMagno, S.G., Inorg. Chem., 2003, vol. 42, no. 19, p. 6032. https://doi.org/10.1021/ic034705o

    Article  CAS  PubMed  Google Scholar 

  83. Wu, H. and Lucas, C.R., Inorg. Chem., 1992, vol. 31, no. 12, p. 2354. https://doi.org/10.1021/ic00038a012

    Article  CAS  Google Scholar 

  84. Alberto, R., Nef, W., Smith, A., Kaden, T.A., Neuburger, M., Zehnder, M., Frey, A., Abram, U., and Schubiger, P.A., Inorg. Chem., 1996, vol. 35, no. 11, p. 3420. https://doi.org/10.1021/ic951421y

    Article  CAS  PubMed  Google Scholar 

  85. Lucas, C.R. and Liu, S., J. Am. Chem. Soc., Dalton Trans., 1994, vol. 2, p. 185. https://doi.org/10.1039/dt9940000185

    Article  Google Scholar 

  86. Sullivan, B.P., Salmon, D.J., and Meyer, T.J., Inorg. Chem. 1978, vol. 17, no. 12, p. 3334. https://doi.org/10.1021/ic50190a006

  87. Bruce, M., and Windsor, N., Aust. J. Chem., 1977, vol. 30, no. 7, p. 1601. https://doi.org/10.1071/ch9771601

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge to the Head of Department of Chemistry at the Indian Institute of Technology Roorkee, India, for providing access to the instrumental facilities. We would also like to acknowledge the Head of RSIC CDRI, Lucknow, India, and RSIC Chandigarh University, Chandigarh, India for their contribution in recording NMR and mass spectra of the compounds and Council of Scientific & Industrial Research, New Delhi (India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kumar.

Ethics declarations

The authors declare no conflicts of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Prasad, R. Electronic Absorption, Emission Spectral, and Electrochemical Studies of [Cu(OBTTAP)] Linked (bpy)2RuII, (phen)2RuII, and (PPh3)CpRuII Complexes. Russ J Gen Chem 93, 1474–1485 (2023). https://doi.org/10.1134/S1070363223060208

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223060208

Keywords:

Navigation