Skip to main content
Log in

Development of Spiro[chromane-2,4′-piperidine]-4(3H)-one Compounds in the Field of Medicinal Chemistry Research (A Review)

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

In the recent past, spiro[chromane-2,4′-piperidine]-4(3H)-one has been proven as one of the most valued scaffolds utilized by several medicinal chemists and pharmacologists to yield therapeutically effective biologicals. Spiro[chromane-2,4′-piperidine]-4(3H)-one is a member of the six-membered tricyclic molecule containing oxygen and nitrogen as hetero atoms. A spiro compounds is usually formed by the simultaneous reactions of condensation and cyclization. Owing to its versatile features, it has been incorporated in a wide variety of pharmaceuticals, bio-chemicals, sometimes even in the generation of hits as well as lead molecules. Chromanone-based spiro compounds have garnered a great deal of attention in recent years due to their presence in biologically active naturally derived compounds, such as vitamins, alkaloids, hormones, antibiotics, glycosides, and several other products. Compounds with the said backbone have shown their pharmacological potential as antidiabetic, anticancer, antioxidant, anti-inflammatory, anti-obesity, antihypertensive, antiplasmodial, antimalarial and antitumor. In addition to these, over the past few years, significant advancements in complex amido-piperidyl linked spiro heterocyclic chroman-4-ones have been continuously reported in pre-clinical and clinical investigations. This investigation highlights the remarkable development in the synthesis of spiro[chromane-2,4′-piperidine]-4(3H)-one-derived compounds over the past several years while focusing on the aspects of their therapeutical importance. In few cases plausible synthetic mechanism was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Fig. 1.

REFERENCES

  1. Ding, A., Meazza, M., Guo, H., Yang, J.W., and Rios, R., Chem. Soc. Rev., 2018, vol. 47, no. 15, p. 5946. https://doi.org/10.1039/C6CS00825A

  2. Emami, S. and Ghanbarimasir, Z., Eur. J. Med. Chem., 2015, vol. 93, p. 539. https://doi.org/10.1016/j.ejmech.2015.02.048

  3. Abdou, M.M., El-Saeed, R.A., and Bondock, S., Arab. J. Chem., 2019, vol. 12, no. 1, p. 88. https://doi.org/10.1016/j.arabjc.2015.06.012

  4. Baldwin, J.J., Claremon, D.A., Elliot, J.M., Ponticello, G.S., Remy, D.C., and Selnick, H.G., C. A., 1992, vol. 116, p. 20938d.

    Google Scholar 

  5. Yang, L., Morriello, G., Prendergast, K., Cheng, K., Jacks, T., Chan, W.W.-S., Schleim, K.D., Smith, R.G., and Patchett, A.A., Bioorg. Med. Chem. Lett., 1998, vol. 8, no. 1, p. 107. https://doi.org/10.1016/s0960-894x(97)10199-8

  6. Elliott, J.M., Selnick, H.G., Claremon, D.A., Baldwin, J.J., Buhrow, S.A., Butcher, J.W., Habecker, C.N., King, S.W., and Lynch, J.J.Jr., J. Med. Chem., 1992, vol. 35, no. 21, p. 3973. https://doi.org/10.1021/jm00099a028

  7. Abdelatef, S.A., El-Saadi, M.T., Amin, N.H., Abdelazeem, A.H., and Abdellatif, K.R.A., J. Appl. Pharm. Sci., 2018, vol. 8, no. 1, p. 9. https://doi.org/10.7324/JAPS.2018.8102

  8. Atta, S.M.S., Farrag, D.S., Sweed, A.M.K., and Abdel-Rahman, A.H., Eur. J. Med. Chem., 2010, vol. 45, no. 11, p. 4920. https://doi.org/10.1016/j.ejmech.2010.07.065

  9. El-Desoky, S.I., Badria, F.A., Abozeid, M.A., Kandeel, E.A., and Abdel-Rahman, A.H., Med. Chem. Res. 2013, vol. 22, p. 2105. https://doi.org/10.1007/s00044-012-0201-0

  10. Becknell, N.C., Dandu, R.R., Lyons, J.A., Aimone, L.D., Raddatz, R., and Hudkins, R.L., Bioorg. Med. Chem. Lett., 2012, vol. 22, no. 1, p. 186. https://doi.org/10.1016/j.bmcl.2011.11.038

  11. Bourdonnec, B.Le., Windh, R.T., Ajello, C.W., Leister, L.K., Gu, M., Chu, G.-H., Tuthill, P.A., Barker, W.M., Koblish, M., and Wiant, D.D., J. Med. Chem. 2008, vol. 51, no. 19, p. 5893. https://doi.org/10.1021/jm8008986

  12. Feng, L., Maddox, M.M., Alam, M.Z., Tsutsumi, L.S., Narula, G., Bruhn, D.F., Wu, X., Sandhaus, S., Lee, R.B., and Simmons, C.J., J. Med. Chem., 2014, vol. 57, no. 20, p. 8398. https://doi.org/10.1021/jm500853v

  13. Huang, T., Sun, J., Wang, Q., Gao, J., and Liu, Y., Molecules, 2015, vol. 20, no. 9, p. 16221. https://doi.org/10.3390/molecules200916221

  14. Le Bourdonnec, B., Windh, R.T., Leister, L.K., Zhou, Q.J., Ajello, C.W., Gu, M., Chu, G.-H., Tuthill, P.A., Barker, W.M., and Koblish, M., J. Med. Chem., 2009, vol. 52, no. 18, p. 5685. https://doi.org/10.1021/jm900773n

  15. Mujahid, M., Yogeeswari, P., Sriram, D., Basavanag, U.M.V, Diaz-Cervantes, E., Cordoba-Bahena, L., Robles, J., Gonnade, R.G., Karthikeyan, M., and Vyas, R., RSC Adv., 2015, vol. 5, no. 129, p. 106448. https://doi.org/10.1039/C5RA21737G

  16. Roberts, B.F., Iyamu, I.D., Lee, S., Lee, E., Ayong, L., Kyle, D.E., Yuan, Y., Manetsch, R., and Chakrabarti, D., Int. J. Parasitol. Drugs Drug Resist., 2016, vol. 6, no. 1, p. 85. https://doi.org/10.1016/j.ijpddr.2016.02.004

  17. Stefanello, F.S., Kappenberg, Y.G., Ketzer, A., Franceschini, S.Z., Salbego, P.R.S., Acunha, T.V., Nogara, P.A., Rocha, J.B.T., Martins, M.A.P., and Zanatta, N., J. Mol. Liq., 2021, vol. 324, p. 114729. https://doi.org/10.1016/j.molliq.2020.114729

  18. Thaler, F., Moretti, L., Amici, R., Abate, A., Colombo, A., Carenzi, G., Fulco, M.C., Boggio, R., Dondio, G., and Gagliardi, S., Eur. J. Med. Chem., 2016, vol. 108, p. 53. https://doi.org/10.1016/j.ejmech.2015.11.010

  19. Thaler, F., Varasi, M., Carenzi, G., Colombo, A., Abate, A., Bigogno, C., Boggio, R., Carrara, S., Cataudella, T., and Dal Zuffo, R., ChemMedChem., 2012, vol. 7, no. 4, p. 709. https://doi.org/10.1002/cmdc.201200024

  20. Uto, Y., Kiyotsuka, Y., Ueno, Y., Miyazawa, Y., Kurata, H., Ogata, T., Deguchi, T., Yamada, M., Watanabe, N., and Konishi, M., Bioorg. Med. Chem. Lett., 2010, vol. 20, no. 2, p. 746. https://doi.org/10.1016/j.bmcl.2009.11.043

  21. Varasi, M., Thaler, F., Abate, A., Bigogno, C., Boggio, R., Carenzi, G., Cataudella, T., Dal Zuffo, R., Fulco, M.C., and Rozio, M.G., J. Med. Chem., 2011, vol. 54, no. 8, p. 3051. https://doi.org/10.1021/jm200146u

  22. Gopaul, K. Shaikh, M., Ramjugernath, D., Koorbanally, N.A., and Omondi, B., Acta Crystallogr. (E), 2012, vol. 68, no. 4, p. o1006. https://doi.org/10.1107/S160053681200949X

  23. Shaikh, M.M., Kruger, H G., Bodenstein, J., Smith, P., and du Toit, K., Nat. Prod. Res., 2012, vol. 26, no. 16, p. 1473. https://doi.org/10.1080/14786419.2011.565004

  24. Shaikh, M.M., Kruger, H.G., Smith, P., Bodenstein, J., and du Toit, K., J. Pharm. Res., 2013, vol. 6, no. 1, p. 21. https://doi.org/10.1016/j.jopr.2012.11.008

  25. Shaikh, M.M., Maguire, G.E.M., Kruger, H.G., and du Toit, K., Acta Crystallogr. (E), 2011, vol. 67, no. 3, p. o703. https://doi.org/10.1107/S1600536811002066

  26. Jacquot, Y., Byrne, C., Xicluna, A., and Leclercq, G., Med. Chem. Res., 2013, vol. 22, p. 681. https://doi.org/10.1007/s00044-012-0058-2

  27. Bergmann, R. and Gericke, R., J. Med. Chem., 1990, vol. 33, no. 2, p. 492. https://doi.org/10.1021/jm00164a005

  28. Panteleon, V., Kostakis, I.K., Marakos, P., Pouli, N., and Andreadou, I., Bioorg. Med. Chem. Lett., 2008, vol. 18, no. 21, p. 5781. https://doi.org/10.1016/j.bmcl.2008.09.065

  29. Mujahid, M., Gonnade, R.G., Yogeeswari, P., Sriram, D., and Muthukrishnan, M., Bioorg. Med. Chem. Lett., 2013, vol. 23, no. 5, p. 1416. https://doi.org/10.1016/j.bmcl.2012.12.073

  30. Muthukrishnan, M., Basavanag, U.M.V., and Puranik, V.G., Tetrahedron Lett., 2009, vol. 50, no. 22, p. 2643. https://doi.org/10.1016/j.tetlet.2009.03.104

  31. Kelly, S.E. and Vandeplas, B.C., J. Org. Chem., 1991, vol. 56, no. 3, p. 1325. https://doi.org/10.1021/jo00003a081

  32. Ghatpande, N., Phal, D., Karpoormath, R., Soliman, M., Jadhav, J., Choudhari, P., and Shaikh, M.M., Polycycl. Arom. Compd., 2022, vol. 42, no. 8, p. 4878. https://doi.org/10.1080/10406638.2021.1915807

  33. Koshizawa, T., Morimoto, T., Watanabe, G., Fukuda, T., Yamasaki, N., Hagita, S., Sawada, Y., Okuda, A., Shibuya, K., and Ohgiya, T., Bioorg. Med. Chem. Lett., 2018, vol. 28, no. 19, p. 3236. https://doi.org/10.1016/j.bmcl.2018.08.010

  34. Lepifre, F., Christmann-Franck, S., Roche, D., Leriche, C., Carniato, D., Charon, C., Bozec, S., Doare, L., Schmidlin, F., and Lecomte, M., Bioorg. Med. Chem. Lett., 2009, vol. 19, no. 13, p. 3682. https://doi.org/10.1016/j.bmcl.2009.02.123

  35. Chaudhari, S.S., Kadam, A.B., Khairatkar-Joshi, N., Mukhopadhyay, I., Karnik, P.V., Raghuram, A., Rao, S.S., Vaiyapuri, T.S., Wale, D.P., Bhosale, V.M., Gudi, G.S., Sangana, R.R., and Thomas, A., Bioorg. Med. Chem., 2013, vol. 21, no. 21, p. 6542. https://doi.org/10.1016/j.bmc.2013.08.031

  36. Ashok, D., Gandhi, D.M., Kumar, A.V., Srinivas, G., Reddy, M.S., Kanth, S.S., and Vijjulatha, M., Med. Chem. Res., 2016, vol. 25, p. 2882. https://doi.org/10.1007/s00044-016-1699-3

  37. Shen, H.C., Ding, F.-X., Wang, S., Xu, S., Chen, H., Tong, X., Tong, V., Mitra, K., Kumar, S., and Zhang, X., Bioorg. Med. Chem. Lett., 2009, vol. 19, no. 13, p. 3398. https://doi.org/10.1016/j.bmcl.2009.05.036

  38. Ashok, D., Gundu, S., Aamate, V.K., Devulapally, M.G., and Reddy, M.S., Russ. J. Gen. Chem., 2015, vol. 85, p. 708. https://doi.org/10.1134/S1070363215030305

  39. Laras, Y., Pietrancosta, N., Moret, V., Marc, S., Garino, C., Rolland, A., Monnier, V., and Kraus, J.-L., Aust. J. Chem., 2006, vol. 59, no. 11, p. 812. https://doi.org/10.1071/CH06318

  40. Uto, Y., Ueno, Y., Kiyotsuka, Y., Miyazawa, Y., Kurata, H., Ogata, T., Takagi, T., Wakimoto, S., and Ohsumi, J., Eur. J. Med. Chem., 2011, vol. 46, no. 5, p. 1892. https://doi.org/10.1016/j.ejmech.2011.02.002

  41. Vali, Y.K., Gundla, R., Singh, O.V., Tamboli, Y., Manelli, L.D.C., Ghelardini, C., Al-Tamimi, A.-M.S., Carta, F., Angeli, A., and Supuran, C.T., Bioorg. Chem., 2019, vol. 92, p. 103210. https://doi.org/10.1016/j.bioorg.2019.103210

  42. Chitti, S., Nandikolla, A., Khetmalis, Y.M., Van Calster, K., Kumar, B.V.S., Kumar, B.K., Murugesan, S., Cappoen, D., and Sekhar, K.V.G.C., Chem. Biodivers., 2022, vol. 19, no. 8, p. e202200304. https://doi.org/10.1002/cbdv.202200304

  43. Takeru, N.Y.J.H., Kenji, Y., Koji, I., Tomoharu, O., Mitsuru, I., Hideaki, S., Jun, K., Jun, Y., Patent WO, 2007.

  44. Yamakawa, T.J.H., Niiyama, K., Yamada, K., Iino, T., Ohkubo, M., Imamura, H., Kusunoki, J., and Yang, L., Patent WO 2007/011809, 2007.

  45. Fukatsu, K., Kamata, M., and Yamashita, T., International Patent, in I. Patent (Ed.), 2008.

  46. Freeman-Cook, K.D. and Matthew, S.B., Patent WO 2009/144555, 2008.

  47. Shinde, P., Srivastava, S.K., Odedara, R., Tuli, D., Munshi, S., Patel, J., Zambad, S.P., Sonawane, R., Gupta, R.C., and Chauthaiwale, V., Bioorg. Med. Chem. Lett., 2009, vol. 19, no. 3, p. 949. https://doi.org/10.1016/j.bmcl.2008.11.099

  48. Freeman-Cook, K.D., Amor, P., Bader, S., Buzon, L.M., Coffey, S.B., Corbett, J.W., Dirico, K.J., Doran, S.D., Elliott, R.L., and Esler, W., J. Med. Chem., 2012, vol. 55, no. 2, p. 935. https://doi.org/10.1021/jm201503u

  49. Zhang, H., Wang, L., Wei, Q., Qian, M., Gao, Y., Zhou, J., Mei, L., and Hu, H., Patent CN 109400618 A, 2019.

  50. Chitti, S., Pulya, S., Nandikolla, A., Patel, T.K., Kumar, B.K., Murugesan, S., Ghosh, B., and Sekhar, K.V.G.C., Bioorg. Chem., 2021, vol. 112, p. 104865. https://doi.org/10.1016/j.bioorg.2021.104865

    Article  CAS  PubMed  Google Scholar 

  51. Wei, Q., Mei, L., Chen, P., Yuan, X., Zhang, H., and Zhou, J., Bioorg. Chem., vol. 101, p. 103943.

  52. Ieles, J., Dudasne, M.K., Ledneczki, I., Tapolcsanyi, P., Horvath, A., Nemethy, Z., and Levay, G.I., Patent WO 2020012422 A1, 2020.

  53. Hadida-Ruah, S.S., Miller, M.T., Kallel, E.A., Bear, B.R., Arumugam, V., Deninno, M.P., Zhou, J., Uy, J., and Frieman, B.A., Patent WO 2012112743 A1, 2012.

  54. Hadida-Ruah, S.S., Grootenhuis, P.D.J., Miller, M.T., Anderson, C., Pontillo, J., Kallel, E.A., Numa, M.M.D., Frieman, B.A., McCartney, J., Worley, J.F., et al., Patent WO 2013067248 A1, 2013.

  55. Ichinose, N.H.K., Nakanishi, E., Nihei, Y., Suzuki, N., and Yamamoto, T., I Pat. WO JP2005119987 A, 2005.

Download references

ACKNOWLEDGMENTS

Authors are thankful to Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences Management, Asansol, Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan and Department of Chemistry, School of Advanced Science, VIT, Vellore for providing resources to write this review.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sub. Banerjee or S. De.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, S., Banerjee, S., Chakraborty, U. et al. Development of Spiro[chromane-2,4′-piperidine]-4(3H)-one Compounds in the Field of Medicinal Chemistry Research (A Review). Russ J Gen Chem 93, 1274–1293 (2023). https://doi.org/10.1134/S1070363223050274

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223050274

Keywords:

Navigation