Skip to main content

Advertisement

Log in

An Overview of 3d Metalla-Electrochemical Functionalization for Sustainable Organic Transformations (A Review)

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

To enhance the potency of molecular synthesis, selective oxidative alteration of otherwise inert C–H bonds via transition metal has perceived major attention in the field of coordination chemistry. Academicians wish to capitalize such Csp2–H bond activation/functionalization via cross-coupling such as amination, oxygenation, thiolation, annulation reaction, etc. Despite substantial progress, conventional oxidative C–H activations are generally dominated by precious 4d or 5d transition metal catalysts such as palladium, ruthenium, iridium, and rhodium and less towards economical 3d transition metals such as nickel, cobalt, copper, and manganese. Both approaches compromise the sustainable nature of the C–H activation protocol as it employs the stoichiometric amount of oxidant under a mild condition causing the selective issue of reductive elimination from the metal center and so forth thus forming by-products which is difficult to separate and thus reduce atom economy that limit catalyst turnover that is a major problem in C–H activation step. Favorable sustainability can be procured by the application of electrochemical tools as renewable resources on the stage of C–H activation chemistry catalyzed by transition metals thus, making the procedure environmentally benign. In this scenario, electro-organic mediated functionalization via 3d transition metals is a resource-economical alternative technique that inherits the general idea of economic sustainability due to its inexpensive nature, variable oxidation state, and high chemical reactivity towards various functional groups with unmet site selectivity in an organic molecule. Such electro-organic mediated functionalization via 3d transition metals inspires to develop of selective products via minimization of undesired side reactions which in turn excites the reaction developments on the enhanced energy efficiency of atom economy products with a wide range of functional groups tolerance and thus replacing classical reaction methods and chemical oxidants. This mini-review pays attention to the C–H activation/functionalization of the bond to C–C, C–N, and C–Miscellaneous (P, O, and S) bond linkage by employing different earth-abundant 3d transition metals such as nickel, copper, cobalt and manganese’s using the electrochemical tool until 2023.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

REFERENCES

  1. Matlin, S.A., Mehta, G., Hopf, H., and Krief, A., Nat. Chem., 2016, vol. 8, no. 5, p. 393. https://doi.org/10.1038/nchem.2498

    Article  CAS  PubMed  Google Scholar 

  2. Trost, B., Science, 1991, vol. 254, p. 1471. https://doi.org/10.1126/science.1962206

    Article  CAS  PubMed  Google Scholar 

  3. Anastas, P. and Eghbali, N., Chem. Soc. Rev., 2010, vol. 39, no. 1, p. 301. https://doi.org/10.1039/B918763B

    Article  CAS  PubMed  Google Scholar 

  4. Johansson Seechurn, C.C.C., Kitching, M.O., Colacot, T.J., and Snieckus, V., Angew. Chem. Int. Ed., 2012, vol. 51, no. 21, p. 5062. https://doi.org/10.1002/anie.201107017

    Article  CAS  Google Scholar 

  5. Bergman, R.G., Nature, 2007, vol. 446, p. 391. https://doi.org/10.1038/446391a

    Article  CAS  PubMed  Google Scholar 

  6. Wencel-Delord, J. and Glorius, F., Nat. Chem., 2013, vol. 5, no. 5, p. 369. https://doi.org/10.1038/nchem.1607

    Article  CAS  PubMed  Google Scholar 

  7. He, J., Wasa, M., Chan, K.S.L., Shao, Q., and Yu, J.-Q., Chem. Rev., 2017, vol. 117, no. 13, p. 8754. https://doi.org/10.1021/acs.chemrev.6b00622

    Article  CAS  PubMed  Google Scholar 

  8. Rej, S., Ano, Y., and Chatani, N., Chem. Rev., 2020, vol. 120, no. 3, p. 1788. https://doi.org/10.1021/acs.chemrev.9b00495

    Article  CAS  PubMed  Google Scholar 

  9. Tian, T., Li, Z., and Li, C.-J., Green Chem., 2021, vol. 23, no. 18, p. 6789. https://doi.org/10.1039/D1GC01871J

    Article  CAS  Google Scholar 

  10. Li, J., Huang, C.-Y., and Li, C.-J. Trends Chem., 2022, vol. 4, no. 6, p. 479. https://doi.org/10.1016/j.trechm.2022.03.006

    Article  CAS  Google Scholar 

  11. Baeten, M. and Maes, B.U.W., Adv. Organometal. Chem., 2017, vol. 67, p. 401. https://doi.org/10.1016/bs.adomc.2017.04.003

    Article  CAS  Google Scholar 

  12. Krylov, I.B., Vil’, V.A., and Terent’ev, A.O., Beilstein J. Org. Chem., 2015, vol. 11, p. 92. https://doi.org/10.3762/bjoc.11.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Batra, A., Singh, P., and Singh, K.N., Asian J. Org. Chem., 2021, vol. 10, no. 5, p. 1024. https://doi.org/10.1002/ajoc.202100070

    Article  CAS  Google Scholar 

  14. Kozhushkov, S.I. and Ackermann, L., Chem. Sci., 2013, vol. 4, no. 3, p. 886. https://doi.org/10.1039/C2SC21524A

    Article  CAS  Google Scholar 

  15. Shang, M., Wang, H.-L., Sun, S.-Z., Dai, H.-X., and Yu, J.-Q., J. Am. Chem. Soc., 2014, vol. 136, no. 33, p. 11590. https://doi.org/10.1021/ja507704b

    Article  CAS  PubMed  Google Scholar 

  16. Nareddy, P., Jordan, F., and Szostak, M., ACS Catal., 2017, vol. 7, no. 9, p. 5721. https://doi.org/10.1021/acscatal.7b01645

    Article  CAS  Google Scholar 

  17. Park, Y., Kim, Y., and Chang, S., Chem. Rev., 2017, vol. 117, no. 13, p. 9247. https://doi.org/10.1021/acs.chemrev.6b00644

    Article  CAS  PubMed  Google Scholar 

  18. Timsina, Y.N., Gupton, B.F., and Ellis, K.C., ACS Catal. 2018, vol. 8, no. 7, p. 5732. https://doi.org/10.1021/acscatal.8b01168

  19. Bedford, R.B., Haddow, M.F., Mitchell, C.J., and Webster, R.L., Angew. Chem. Int. Ed., 2011, vol. 50, no. 24, p. 5524. https://doi.org/10.1002/anie.201101606

    Article  CAS  Google Scholar 

  20. Frontmatter. In: Handbook of CH Transformations, Weinheim: Wiley-VCH Verlag GmbH, 2008, p. 1. https://doi.org/10.1002/9783527619450.fmatter

  21. Tang, S.Y., Bourne, R.A., Smith, R.L., and Poliakoff, M., Green Chem., 2008, vol. 10, no. 3, p. 268. https://doi.org/10.1039/b719469m

    Article  CAS  Google Scholar 

  22. Tang, S., Zeng, L., and Lei, A., J. Am. Chem. Soc., 2018, vol. 140, no. 41, p. 13128. https://doi.org/10.1021/jacs.8b07327

    Article  CAS  PubMed  Google Scholar 

  23. Liu, C., Liu, D., and Lei, A., Acc. Chem. Res., 2014, vol. 47, no. 12, p. 3459. https://doi.org/10.1021/ar5002044

    Article  CAS  PubMed  Google Scholar 

  24. Wang, X., Xu, X., Wang, Z., Fang, P., and Mei, T., Chinese J. Org. Chem., 2020, vol. 40, no. 11, p. 3738. https://doi.org/10.6023/cjoc202003022

    Article  CAS  Google Scholar 

  25. Wender, P.A., Verma, V.A., Paxton, T.J., and Pillow, T.H., Acc. Chem. Res., 2008, vol. 41, no. 1, p. 40. https://doi.org/10.1021/ar700155p

    Article  CAS  PubMed  Google Scholar 

  26. Erythropel, H.C., Zimmerman, J.B., de Winter, T.M., Petitjean, L., Melnikov, F., Lam, C.H., Lounsbury, A.W., Mellor, K.E., Janković, N.Z., Tu, Q., Pincus, L.N., Falinski, M.M., Shi, W., Coish, P., Plata, D.L., and Anastas, P.T., Green Chem., 2018, vol. 20, no. 9, p. 1929. https://doi.org/10.1039/C8GC00482J

    Article  CAS  Google Scholar 

  27. Applied Homogeneous Catalysis with Organometallic Compounds, Cornils, B., Herrmann, W.A., Beller, M., and Paciello, R., Eds., Wiley, 2017. https://doi.org/10.1002/9783527651733

  28. Meyer, T.H., Finger, L.H., Gandeepan, P., and Ackermann, L., Trends Chem., 2019, vol. 1, no. 1, p. 63. https://doi.org/10.1016/j.trechm.2019.01.011

    Article  CAS  Google Scholar 

  29. Organic Electrochemistry, Hammerich, O. and Speiser, B., Eds., CRC Press, 2015. https://doi.org/10.1201/b19122

  30. Faraday, M., Ann. Phys. Chem., 1834, vol. 109, p. 433. https://doi.org/10.1002/andp.18341092307

    Article  Google Scholar 

  31. Kolbe, H., J. Prakt. Chem., 1847, vol. 41, no. 1, p. 137. https://doi.org/10.1002/prac.18470410118

    Article  Google Scholar 

  32. Becking, L. and Schäfer, H.J., Tetrahedron Lett., 1988, vol. 29, no. 23, p. 2797. https://doi.org/10.1016/0040-4039(88)85212-2

    Article  CAS  Google Scholar 

  33. Leech, M.C. and Lam, K., Acc. Chem. Res., 2020, vol. 53, no. 1, p. 121. https://doi.org/10.1021/acs.accounts.9b00586

    Article  CAS  PubMed  Google Scholar 

  34. Schäfer, H.-J., in Electrochemistry IV, Berlin: Springer-Verlag, p. 91. https://doi.org/10.1007/BFb0034365

  35. Hickling, A., Trans. Faraday Soc., 1942, vol. 38, p. 27. https://doi.org/10.1039/TF9423800027

    Article  CAS  Google Scholar 

  36. Heyrovsky, J., The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1923, vol. 45, no. 266, p. 303. https://doi.org/10.1080/14786442308634117

    Article  CAS  Google Scholar 

  37. Simons, J.H., J. Electrochem. Soc., 1949, vol. 95, no. 2, p. 47. https://doi.org/10.1149/1.2776733

    Article  CAS  Google Scholar 

  38. Baizer, M.M., Tetrahedron, 1984, vol. 40, no. 6, p. 935. https://doi.org/10.1016/S0040-4020(01)91232-3

    Article  CAS  Google Scholar 

  39. Baizer, M.M., J. Electrochem. Soc., 1964, vol. 111, no. 2, p. 215. https://doi.org/10.1149/1.2426086

    Article  CAS  Google Scholar 

  40. Llorente, M.J., Nguyen, B.H., Kubiak, C.P., Moeller, K.D., J. Am. Chem. Soc., 2016, vol. 138, no. 46, p. 15110. https://doi.org/10.1021/jacs.6b08667

    Article  CAS  PubMed  Google Scholar 

  41. Yoshida, J., Murata, T., and Isoe, S., Tetrahedron Lett., 1986, vol. 27, no. 29, p. 3373. https://doi.org/10.1016/S0040-4039(00)84799-1

    Article  CAS  Google Scholar 

  42. Francke, R. and Little, R.D., Chem. Soc. Rev., 2014, vol. 43, no. 8, p. 2492. https://doi.org/10.1039/c3cs60464k

    Article  CAS  PubMed  Google Scholar 

  43. Schäfer, H.J., Compt. Rend. Chim., 2011, vol. 14, nos. 7–8, p. 745. https://doi.org/10.1016/j.crci.2011.01.002

    Article  CAS  Google Scholar 

  44. Lund, H., J. Electrochem. Soc., 2002, vol. 149, no. 8, p. L8. https://doi.org/10.1149/1.1496107

  45. Gieshoff, T., Kehl, A., Schollmeyer, D., Moeller, K.D., and Waldvogel, S.R., J. Am. Chem. Soc., 2017, vol. 139, no. 35, p. 12317. https://doi.org/10.1021/jacs.7b07488

    Article  CAS  PubMed  Google Scholar 

  46. Jutand, A., Chem. Rev., 2008, vol. 108, no. 7, p. 2300. https://doi.org/10.1021/cr068072h

    Article  CAS  PubMed  Google Scholar 

  47. Yoshida, J., Kataoka, K., Horcajada, R., and Nagaki, A., Chem. Rev., 2008, vol. 108, no. 7, p. 2265. https://doi.org/10.1021/cr0680843

    Article  CAS  PubMed  Google Scholar 

  48. Gandeepan, P., Finger, L.H., Meyer, T.H., and Ackermann, L., Chem. Soc. Rev., 2020, vol. 49, no. 13, p. 4254. https://doi.org/10.1039/D0CS00149J

    Article  CAS  PubMed  Google Scholar 

  49. Jiao, K.-J., Xing, Y.-K., Yang, Q.-L., Qiu, H., and Mei, T.-S., Acc. Chem. Res., 2020, vol. 53, no. 2, p. 300. https://doi.org/10.1021/acs.accounts.9b00603

    Article  CAS  PubMed  Google Scholar 

  50. Röckl, J.L., Pollok, D., Franke, R., and Waldvogel, S.R., Acc. Chem. Res., 2020, vol. 53, no. 1, p. 45. https://doi.org/10.1021/acs.accounts.9b00511

    Article  CAS  PubMed  Google Scholar 

  51. Yuan, Y. and Lei, A., Acc. Chem. Res., 2019, vol. 52, no. 12, p. 3309. https://doi.org/10.1021/acs.accounts.9b00512

    Article  CAS  PubMed  Google Scholar 

  52. Tang, S., Liu, Y., and Lei, A., Chem., 2018, vol. 4, no. 1, p. 27. https://doi.org/10.1016/j.chempr.2017.10.001

    Article  CAS  Google Scholar 

  53. Steckhan, E., In: Electrochemistry I, De Gruyter, 1987, p. 1. https://doi.org/10.1515/9783112539408-004

  54. Steckhan, E., Angew. Chem. Int. Ed., 1986, vol. 25, no. 8, p. 683. https://doi.org/10.1002/anie.198606831

    Article  Google Scholar 

  55. Sauermann, N., Meyer, T.H., Qiu, Y., and Ackermann, L., ACS Catal., 2018, vol. 8, no. 8, p. 7086. https://doi.org/10.1021/acscatal.8b01682

    Article  CAS  Google Scholar 

  56. Ma, C., Fang, P., and Mei, T.-S., ACS Catal., 2018, vol. 8, no. 8, p. 7179. https://doi.org/10.1021/acscatal.8b01697

    Article  CAS  Google Scholar 

  57. Yan, M., Kawamata, Y., and Baran, P.S., Chem. Rev., 2017, vol. 117, no. 21, p. 13230. https://doi.org/10.1021/acs.chemrev.7b00397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gandeepan, P., Müller, T., Zell, D., Cera, G., Warratz, S., and Ackermann, L., Chem. Rev., 2019, vol. 119, no. 4, p. 2192. https://doi.org/10.1021/acs.chemrev.8b00507

    Article  CAS  PubMed  Google Scholar 

  59. Tian, C., Dhawa, U., Scheremetjew, A., and Ackermann, L., ACS Catal., 2019, vol. 9, no. 9, p. 7690. https://doi.org/10.1021/acscatal.9b02348

    Article  CAS  Google Scholar 

  60. Meyer, T.H., Oliveira, J.C.A., Ghorai, D., and Ackermann, L., Angew. Chem. Int. Ed., 2020, vol. 59, no. 27, p. 10955. https://doi.org/10.1002/anie.202002258

    Article  CAS  Google Scholar 

  61. Zhang, S., Struwe, J., Hu, L., and Ackermann, L., Angew. Chem. Int. Ed., 2020, vol. 59, no. 8, p. 3178. https://doi.org/10.1002/anie.201913930

    Article  CAS  Google Scholar 

  62. Samanta, R.C., Struwe, J., and Ackermann, L., Angew. Chem. Int. Ed., 2020, vol. 59, no. 33, p. 14154. https://doi.org/10.1002/anie.202004958

    Article  CAS  Google Scholar 

  63. Zhu, C., Ang, N.W.J., Meyer, T.H., Qiu, Y., and Ackermann, L., ACS Cent. Sci., 2021, vol. 7, no. 3, p. 415. https://doi.org/10.1021/acscentsci.0c01532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ackermann, L., Acc. Chem. Res., 2020, vol. 53, no. 1, p. 84. https://doi.org/10.1021/acs.accounts.9b00510

    Article  CAS  PubMed  Google Scholar 

  65. Service, R.F., Science, 2019, vol. 365, no. 6459, p. 1236. https://doi.org/10.1126/science.365.6459.1236

    Article  CAS  PubMed  Google Scholar 

  66. Qiu, Y., Struwe, J., and Ackermann, L., Synlett, 2019, vol. 30, no. 10, p. 1164. https://doi.org/10.1055/s-0037-1611568

    Article  CAS  Google Scholar 

  67. Sauermann, N., Meyer, T.H., and Ackermann, L., Chem. Eur. J., 2018, vol. 24, no. 61, p. 16209. https://doi.org/10.1002/chem.201802706

    Article  CAS  PubMed  Google Scholar 

  68. Steckhan, E., Arns, T., Heineman, W.R., Hilt, G., Hoormann, D., Jörissen, J., Kröner, L., Lewall, B., and Pütter, H., Chemosphere, 2001, vol. 43, no. 1, p. 63. https://doi.org/10.1016/S0045-6535(00)00325-8

    Article  CAS  PubMed  Google Scholar 

  69. Horn, E.J., Rosen, B.R., and Baran, P.S., ACS Cent. Sci., 2016, vol. 2, no. 5, p. 302. https://doi.org/10.1021/acscentsci.6b00091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Moeller, K.D., Tetrahedron, 2000, vol. 56, no. 49, p. 9527. https://doi.org/10.1016/S0040-4020(00)00840-1

    Article  CAS  Google Scholar 

  71. Sperry, J.B. and Wright, D.L., Chem. Soc. Rev., 2006, vol. 35, no. 7, p. 605. https://doi.org/10.1039/b512308a

    Article  CAS  PubMed  Google Scholar 

  72. Budnikova, Y.H., Chem. Record, 2021, p. 1. https://doi.org/10.1002/tcr.202100009

  73. Budnikova, Y.H., Dolengovsky, E.L., Tarasov, M.V., and Gryaznova, T.V., Front. Chem., 2022, no. 10, p. 1. https://doi.org/10.3389/fchem.2022.1054116

    Article  CAS  Google Scholar 

  74. Liu, D., Ma, H., Fang, P., and Mei, T., Angew. Chem. Int. Ed., 2019, vol. 58, no. 15, p. 5033. https://doi.org/10.1002/anie.201900956

    Article  CAS  Google Scholar 

  75. Siu, T. and Yudin, A.K., J. Am. Chem. Soc., 2002, vol. 124, no. 4, p. 530. https://doi.org/10.1021/ja0172215

    Article  CAS  PubMed  Google Scholar 

  76. Ma, C., Fang, P., Liu, Z.-R., Xu, S.-S., Xu, K., Cheng, X., Lei, A., Xu, H.-C., Zeng, C., and Mei, T.-S., Sci. Bull., 2021, vol. 66, no. 23, p. 2412. https://doi.org/10.1016/j.scib.2021.07.011

    Article  CAS  Google Scholar 

  77. Zhang, S., Samanta, R.C., Sauermann, N., and Ackermann, L., Chem. Eur. J., 2018, vol. 24, no. 72, p. 19166. https://doi.org/10.1002/chem.201805441

    Article  CAS  PubMed  Google Scholar 

  78. Zhang, S., Samanta, R.C., Del Vecchio, A., and Ackermann, L., Chem. Eur. J., 2020, vol. 26, no. 48, p. 10936. https://doi.org/10.1002/chem.202001318

    Article  CAS  PubMed  Google Scholar 

  79. Khrizanforova, V.V., Fayzullin, R.R., Musina, E.I., Karasik, A.A., and Budnikova, Y.H., Mendeleev Commun., 2020, vol. 30, no. 3, p. 302. https://doi.org/10.1016/j.mencom.2020.05.013

    Article  CAS  Google Scholar 

  80. Dudkina, Y.B., Fayzullin, R.R., Lyssenko, K.A., Gubaidullin, A.T., Kholin, K.V., Levitskaya, A.I., Balakina, M.Y., and Budnikova, Y.H., Organometallics, 2019, vol. 38, no. 6, p. 1254. https://doi.org/10.1021/acs.organomet.8b00536

    Article  CAS  Google Scholar 

  81. Yoshino, T. and Matsunaga, S., Asian J. Org. Chem., 2018, vol. 7, vol. 7, p. 1193. https://doi.org/10.1002/ajoc.201800195

    Article  CAS  Google Scholar 

  82. Moselage, M., Li, J., and Ackermann, L., ACS Catal., 2016, vol. 6, no. 2, p. 498. https://doi.org/10.1021/acscatal.5b02344

    Article  CAS  Google Scholar 

  83. Wei, D., Zhu, X., Niu, J.-L., and Song, M.-P., ChemCatChem, 2016, vol. 8, no. 7, p. 1242. https://doi.org/10.1002/cctc.201600040

    Article  CAS  Google Scholar 

  84. Lapointe, D. and Fagnou, K., Chem. Lett., 2010, vol. 39, no. 11, p. 1118. https://doi.org/10.1246/cl.2010.1118

    Article  CAS  Google Scholar 

  85. Samanta, R.C., Meyer, T.H., Siewert, I., and Ackermann, L., Chem. Sci., 2020, vol. 11, no. 33, p. 8657. https://doi.org/10.1039/D0SC03578E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Budnikova, Y., Bochkova, O., Khrizanforov, M., Nizameev, I., Kholin, K., Gryaznova, T., Laskin, A., Dudkina, Y., Strekalova, S., Fedorenko, S., Kononov, A., and Mustafina, A., ChemCatChem, 2019, vol. 11, no. 22, p. 5615. https://doi.org/10.1002/cctc.201901391

    Article  CAS  Google Scholar 

  87. Modern Organocopper Chemistry, Krause, N., Ed., Wiley, 2002. https://doi.org/10.1002/3527600086

  88. Yang, Q.-L., Wang, X.-Y., Lu, J.-Y., Zhang, L.-P., Fang, P., and Mei, T.-S., J. Am. Chem. Soc., 2018, vol. 140, no. 36, p. 11487. https://doi.org/10.1021/jacs.8b07380

    Article  CAS  PubMed  Google Scholar 

  89. Suess, A.M., Ertem, M.Z., Cramer, C.J., and Stahl, S.S., J. Am. Chem. Soc., 2013, vol. 135, no. 26, p. 9797. https://doi.org/10.1021/ja4026424

    Article  CAS  PubMed  Google Scholar 

  90. Wendlandt, A.E., Suess, A.M., and Stahl, S.S., Angew. Chem. Int. Ed., 2011, vol. 50, no. 47, p. 11062. https://doi.org/10.1002/anie.201103945

    Article  CAS  Google Scholar 

  91. Cano, R., Mackey, K., and McGlacken, G.P., Catal. Sci. Technol., 2018, vol. 8, no. 5, p. 1251. https://doi.org/10.1039/c7cy02514a

    Article  CAS  Google Scholar 

  92. Bennett, R.L., Bruce, M.I., and Stone, F.G.A., J. Organomet. Chem., 1975, vol. 94, no. 1, p. 65. https://doi.org/10.1016/S0022-328X(00)82531-0

    Article  CAS  Google Scholar 

  93. Li, C., Kawamata, Y., Nakamura, H., Vantourout, J.C., Liu, Z., Hou, Q., Bao, D., Starr, J.T., Chen, J., Yan, M., and Baran, P.S., Angew. Chem. Int. Ed., 2017, vol. 56, no. 42, p. 13088. https://doi.org/10.1002/anie.201707906

    Article  CAS  Google Scholar 

  94. Kawamata, Y., Vantourout, J.C., Hickey, D.P., Bai, P., Chen, L., Hou, Q., Qiao, W., Barman, K., Edwards, M.A., Garrido-Castro, A.F., DeGruyter, J.N., Nakamura, H., Knouse, K., Qin, C., Clay, K.J., Bao, D., Li, C., Starr, J.T., Garcia-Irizarry, C., Sach, N., White, H.S., Neurock, M., Minteer, S.D., and Baran, P.S., J. Am. Chem. Soc., 2019, vol. 141, no. 15, p. 6392. https://doi.org/10.1021/jacs.9b01886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ding, H., Xu, K., and Zeng, C.-C., J. Catal., 2020, vol. 381, p. 38. https://doi.org/10.1016/j.jcat.2019.10.030

    Article  CAS  Google Scholar 

  96. Zhang, Q., Chang, X., Peng, L., and Guo, C., Angew. Chem. Int. Ed., 2019, vol. 58, no. 21, p. 6999. https://doi.org/10.1002/anie.201901801

    Article  CAS  Google Scholar 

  97. Gosmini, C., Nédélec, J.Y., and Périchon, J., Tetrahedron Lett., 2000, vol. 41, no. 2, p. 201. https://doi.org/10.1016/S0040-4039(99)02037-7

    Article  CAS  Google Scholar 

  98. Sengmany, S., Ollivier, A., Le Gall, E., and Léonel, E., Org. Biomol. Chem., 2018, vol. 16, no. 24, p. 4495. https://doi.org/10.1039/C8OB00500A

    Article  CAS  PubMed  Google Scholar 

  99. Wang, Y., Deng, L., Wang, X., Wu, Z., Wang, Y., and Pan, Y., ACS Catal., 2019, vol. 9, no. 3, p. 1630. https://doi.org/10.1021/acscatal.8b04633

    Article  CAS  Google Scholar 

  100. Sauermann, N., Mei, R., and Ackermann, L., Angew. Chem. Int. Ed., 2018, vol. 57, no. 18, p. 5090. https://doi.org/10.1002/anie.201802206

    Article  CAS  Google Scholar 

  101. Gao, X., Wang, P., Zeng, L., Tang, S., and Lei, A., J. Am. Chem. Soc., 2018, vol. 140, no. 12, p. 4195. https://doi.org/10.1021/jacs.7b13049

    Article  CAS  PubMed  Google Scholar 

  102. Mei, R., Sauermann, N., Oliveira, J.C.A., and Ackermann, L., J. Am. Chem. Soc., 2018, vol. 140, no. 25, p. 7913. https://doi.org/10.1021/jacs.8b03521

    Article  CAS  PubMed  Google Scholar 

  103. Tian, C., Massignan, L., Meyer, T.H., and Ackermann, L., Angew. Chem. Int. Ed., 2018, vol. 57, no. 9, p. 2383. https://doi.org/10.1002/anie.201712647

    Article  CAS  Google Scholar 

  104. Simon, M.-O. and Li, C.-J., Chem. Soc. Rev., 2012, vol. 41, no. 4, p. 1415. https://doi.org/10.1039/C1CS15222J

    Article  CAS  PubMed  Google Scholar 

  105. Tang, S., Wang, D., Liu, Y., Zeng, L., and Lei, A., Nat. Commun., 2018, vol. 9, no. 1, p. 798. https://doi.org/10.1038/s41467-018-03246-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zeng, L., Li, H., Tang, S., Gao, X., Deng, Y., Zhang, G., Pao, C.-W., Chen, J.-L., Lee, J.-F., and Lei, A., ACS Catal., 2018, vol. 8, no. 6, p. 5448. https://doi.org/10.1021/acscatal.8b00683

    Article  CAS  Google Scholar 

  107. Sauermann, N., Meyer, T. H., Tian, C., and Ackermann, L., J. Am. Chem. Soc., 2017, vol. 139, no. 51, p. 18452. https://doi.org/10.1021/jacs.7b11025

    Article  CAS  PubMed  Google Scholar 

  108. Chen, J., Jin, L., Zhou, J., Jiang, X., and Yu, C., Tetrahedron Lett., 2019, vol. 60, no. 31, p. 2054. https://doi.org/10.1016/j.tetlet.2019.06.060

    Article  CAS  Google Scholar 

  109. Cao, Y., Yuan, Y., Lin, Y., Jiang, X., Weng, Y., Wang, T., Bu, F., Zeng, L., and Lei, A., Green Chem., 2020, vol. 22, no. 5, p. 1548. https://doi.org/10.1039/D0GC00289E

    Article  CAS  Google Scholar 

  110. Meyer, T.H., Chesnokov, G.A., and Ackermann, L., ChemSusChem, 2020, vol. 13, no. 4, p. 668. https://doi.org/10.1002/cssc.202000057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tarasov, M.V., Bochkova, O.D., Gryaznova, T.V., Mustafina, A.R., and Budnikova, Y.H., Int. J. Mol. Sci., 2023, vol. 24, no. 1, p. 765. https://doi.org/10.3390/ijms24010765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Strekalova, S.O., Grinenko, V.V., Gryaznova, T.V., Kononov, A.I., Dolengovski, E.L., and Budnikova, Y.H., Phosphorus, Sulfur, Silicon, Relat. Elem., 2019, vol. 194, nos. 4–6, p. 506. https://doi.org/10.1080/10426507.2018.1540488

    Article  CAS  Google Scholar 

  113. Khrizanforov, M., Strekalova, S., Khrizanforova, V., Dobrynin, A., Kholin, K., Gryaznova, T., Grinenko, V., Gubaidullin, A., Kadirov, M.K., and Budnikova, Y., Top. Catal., 2018, vol. 61, no. 18–19, p. 1949. https://doi.org/10.1007/s11244-018-1014-2

    Article  CAS  Google Scholar 

  114. Kathiravan, S., Suriyanarayanan, S., and Nicholls, I.A., Org. Lett., 2019, vol. 21, no. 7, p. 1968. https://doi.org/10.1021/acs.orglett.9b00003

    Article  CAS  PubMed  Google Scholar 

  115. Strekalova, S., Kononov, A., Rizvanov, I., and Budnikova, Y., RSC Adv., 2021, vol. 11, vol. 59, p. 37540. https://doi.org/10.1039/d1ra07650g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gryaznova, T.V., Kholin, K.V., Nikanshina, E.O., Khrizanforova, V.V., Strekalova, S.O., Fayzullin, R.R., and Budnikova, Y.H., Organometallics, 2019, vol. 38, no. 19, p. 3617. https://doi.org/10.1021/acs.organomet.9b00443

    Article  CAS  Google Scholar 

  117. Fu, N., Song, L., Liu, J., Shen, Y., Siu, J.C., and Lin, S., J. Am. Chem. Soc., 2019, vol. 141, no. 37, p. 14480. https://doi.org/10.1021/jacs.9b03296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang, S., Xue, Q., Guan, Z., Ye, Y., and Lei, A., ACS Catal., 2021, vol. 11, no. 7, p. 4295. https://doi.org/10.1021/acscatal.1c00549

    Article  CAS  Google Scholar 

  119. Zhu, C., Stangier, M., Oliveira, J.C.A., Massignan, L., and Ackermann, L., Chem. Eur. J., 2019, vol. 25, no. 71, p. 16382. https://doi.org/10.1002/chem.201904018

    Article  CAS  PubMed  Google Scholar 

  120. Fu, N., Sauer, G. S., Saha, A., Loo, A., and Lin, S. Science , 2017, vol. 357, no. 6351, p. 575. https://doi.org/10.1126/science.aan6206

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to Prof. R.K.P. Singh (Presently Vice-Chancellor of D.S.M.N.R. University, Lucknow) for valuable guidance and support on the research ground. The authors also recognize respective working institutions for supporting to the publication of this work at the research ground.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Saraswat.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saraswat, A., Kumar, S. An Overview of 3d Metalla-Electrochemical Functionalization for Sustainable Organic Transformations (A Review). Russ J Gen Chem 93, 1222–1245 (2023). https://doi.org/10.1134/S1070363223050249

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223050249

Keywords:

Navigation