Skip to main content
Log in

Synthesis and Characterization of Metals Complexes with Uracil and Uracil Derivatives (A Review)

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Previous studies on the synthesis and characterization of metal chelates with uracil by elemental analysis, conductivity, IR, UV-Vis, NMR spectroscopy, and thermal analysis were covered in this review article. Reviewing these studies, we found that uracil can be coordinated through the electron pair on the N1, N3, O2, or O4 atoms. If the uracil was a mono-dentate ligand, it will be coordinated by one of the following atoms: N1, N3 or O2. But if the uracil was bi-dentate ligand, it will be coordinated by atoms N1 and O2, N3 and O2 or N3 and O4. However, when uracil forms complexes in the form of polymers, coordination occurs through the following atoms: N1 and N3 or N1 and O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

REFERENCES

  1. Jin, Q., Fleming, A.M., Johnson, R.P., Ding, Y., Burrows, C.J., and White, H.S., J. Am. Chem. Soc., 2013, vol. 135, no. 51, p. 19347. https://doi.org/10.1021/ja410615d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bensen, R.J., and Warner, H.R., Plant Physiol., 1987, vol. 84, no. 4, p. 1102. https://doi.org/10.1104/pp.84.4.1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Obaid, S.M., J. Eng. Technol., 2019, vol. 37, no. 1, p. 6. http://creativecommons.org/licenses/by/4.0

    Article  Google Scholar 

  4. Shokr, E.K., Kamel, M.S., Abdel-Ghany, H., El- Remaily, M.A.E.A.A.A., and Abdou, A., Mater. Chem. Phys., 2022, vol. 290, p. 126646. https://doi.org/10.1016/j.matchemphys.2022.126646

    Article  CAS  Google Scholar 

  5. Watanabe, K.A., Harada, K., Zeidler, J., MatulicAdamic, J., Takahashi, K., Ren, W.Y., and Chou, T.C., J. Med. Chem., 1990, vol. 33, no. 8, p. 2145. https://doi.org/10.1021/jm00170a016

    Article  CAS  PubMed  Google Scholar 

  6. Xiong, J., Lan, Y.J., and Zhang, S.F., Russ. J. Coord. Chem., 2007, vol. 33, no. 4, p. 306. https://doi.org/10.1134/S1070328407040124

    Article  CAS  Google Scholar 

  7. Arafath, M.A., Adam, F., Ahamed, M.B.K., Karim, M.R., Uddin, M.N., Yamin, B.M., and Abdou, A., J. Mol. Struct., 2023, vol. 1278, 134887. https://doi.org/10.1016/j.molstruc.2022.134887

  8. Elkanzi, N.A.A., Ali, A.M., Albqmi, M., and Abdou, A., Appl Organomet Chem, 2022, vol. 36, no. 11, p. e6868. https://doi.org/10.1002/aoc.6868

  9. Miszczak-Zaborska, E., and Woźniak, K., Z. Naturforsch. (C), 1997, vol. 52, p. 670. https://doi.org/10.1515/znc-1997-9-1015

    Article  CAS  PubMed  Google Scholar 

  10. Elkanzi, N.A.A., Hrichi, H., Salah, H., Albqmi, M., Ali, A.M., and Abdou, A., Polyhedron, 2023, vol. 230, p. 116219. https://doi.org/10.1016/j.poly.2022.116219

    Article  CAS  Google Scholar 

  11. Hossain, M.S., Khushy, K.A., Latif, M.A., Hossen, M.F., Asraf, M.A., Kudrat-E-Zahan, M., and Abdou, A., Russ. J. Gen. Chem., 2022, vol. 92, no. 12, p. 2723. https://doi.org/10.1134/S1070363222120222

  12. Alghuwainem, Y.A.A., Abd El-Lateef, H.M., Khalaf, M.M., Amer, A.A., Abdelhamid, Antar A., Alzharani, A.A., Alfarsi, A., Shaaban, S., Gouda, M., and Abdou, A., Int. J. Mol. Sci., 2022; vol. 23, no. 24, p. 15614. https://doi.org/10.3390/ijms232415614

  13. Latif, M.A., Ahmed, T., Hossain, M.S., Chaki, B.M., Abdou, A., and Kudrat-E-Zahan, M., Russ. J. Gen. Chem., 2023, vol. 93, no. 2, p. 389. https://doi.org/10.1134/S1070363223020214

  14. Prachayasittikul, S., Worachartcheewan, A., Pingaew, R., Suksrichavalit, T., Isarankura-Na-Ayudhya, C., Ruchirawat, S., and Prachayasittikul, V., Lett. Drug. Des. Discov., 2012, vol. 9, no. 3, p. 282. https://doi.org/10.2174/1389557516666160923125801

    Article  CAS  Google Scholar 

  15. Hu, M.L., Yuan, J.X., and Morsali, A., Solid State Sci., 2006, vol. 8, no. 8, p. 981. https://doi.org/10.1016/j.solidstatesciences.2006.02.050

    Article  CAS  Google Scholar 

  16. Alghuwainem, Y.A.A., Abd El-Lateef, H.M., Khalaf, M.M., Abdelhamid, A.A., Alfarsi, A., Gouda, M., Abdelbaset, M., and Abdou, A., J. Mol. Liq., 2023, vol. 369, p. 120936. https://doi.org/10.1016/j.molliq.2022.120936

  17. Ghosh, P., Mukhopadhyay, T.K., and Sarkar, A.R., Transit. Met. Chem., 1984, vol. 9, no. 2, p. 46. https://doi.org/10.1007/BF00618999

  18. Rauter, H., Hillgeris, E.C., and Lippert, B., J. Chem. Soc., Chem. Commun., 1992, 19, 1385. https://doi.org/10.1039/C39920001385

  19. Darensbourg, D.J., Frost, B.J., DerecskeiKovacs, A., and Reibenspies, J.H., Inorg. Chem., 1999, vol. 38, no. 21, p. 4715. https://doi.org/10.1021/ic990758n

  20. Tyagi, S., Singh, S.M., Gencaslan, S., Sheldrick, W.S., and Singh, U.P., Metal-based Drugs, 2002, vol. 8, no. 6, p. 337. https://doi.org/10.1155/MBD.2002.337

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hu, M.L., Yuan, J.X., and Morsali, A., Solid State Sci., 2006, vol. 8, no. 8, p. 981. https://doi.org/10.1016/j.solidstatesciences.2006.02.050

  22. Xia, C.Q., Tan, X. Y., Chen, S.Y., Yue, Y., and Yu, X.Q., Arkivoc, 2006, vol. 2, p. 68. https://doi.org/10.3998/ark.5550190.0007.207

    Article  Google Scholar 

  23. Masoud, M.S., Ibrahim, A.A., Khalil, E.A., and El-Marghany, A., Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2007, vol. 67, p. 662. https://doi.org/10.1016/j.saa.2006.07.046

  24. Prachayasittikul, S., Worachartcheewan, A., Pingaew, R., Suksrichavalit, T., Isarankura-Na-Ayudhya, C., Ruchirawat, S., and Prachayasittikul, V., Lett. Drug. Des. Discov., 2012, vol. 9, no. 3, p. 282. https://doi.org/10.2174/1389557516666160923125801

  25. Zaki, Z.M., Abbas, S.M., Dessoukii, H.A., Awes, H.S., and Mahmoud, R., Mater. Sci. Eng., 2018, vol. 464, no. 1, p. 012009. https://doi.org/10.1088/1757-899X/464/1/012009

    Article  Google Scholar 

  26. Singh, V.P., Tiwari, K., and Mishra, M., Des. Monomers Polym., 2013, vol. 16, no. 5, p. 456. https://doi.org/10.1080/15685551.2012.747164

  27. Singh, M., Srivastava, B.K., Verma, S., and Krishna, V., Mater. Today: Proc., 2022, vol. 57, p. 2116. https://doi.org/10.1016/j.matpr.2021.12.042

  28. Sinha, S.U.R.A.B.H.I., Shukla, P., Singh, P.P., and Krishna, V., Chem Sci Trans, 2014, vol. 3, no. 2, p. 576. https://doi.org/10.7598/cst2014.746

  29. Patil, Y.P. and Nethaji, M., J. Mol. Struct., 2015, vol. 1081, p. 14. https://doi.org/10.1016/j.molstruc.2014.09.052

  30. Hammud, H.H., El Shazly, S., Sonji, G., Sonji, N., and Bouhadir, K.H., Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2015, vol. 150, p. 94. https://doi.org/10.1016/j.saa.2015.05.038

  31. Abdel-Monem, Y.K. and Abouel-Enein, S.A., J. Therm. Anal. Calorim., 2017, vol. 130, no. 3, p. 2257. https://doi.org/10.1007/s10973-017-6507-x

  32. Üngördü, A. and Tezer, N., J. Saudi Chem. Soc., 2017, vol. 21, no. 7, p. 837. https://doi.org/10.1016/j.jscs.2017.04.003

  33. Power, B., Rowe, S., and Fridgen, T.D., J. Phys. Chem. B, 2017, vol. 121, no. 1, p. 58. https://doi.org/10.1021/acs.jpcb.6b09614

  34. Zaki, Z.M., Abbas, S.M., Dessoukii, H.A., Awes, H.S., and Mahmoud, R., Mater. Sci. Eng., 2018, vol. 464, no. 1, p. 012009. https://doi.org/10.1088/1757-899X/464/1/012009

    Article  Google Scholar 

  35. Philip, S., Thomas, P.S., and Mohanan, K., J. Chin. Chem. Soc., 2019, vol. 66, no. 1, p. 21. https://doi.org/10.1002/jccs.201800275

  36. Obaid, S.M., J. Eng. Technol., 2019, vol. 37, no. 1, p. 6. https://doi.org/10.30684/etj.37.1B.2

  37. Gramni, L., Vukea, N., Chakraborty, A., Samson, W.J., Dingle, L.M.K., Xulu, B., and Booysen, I.N., Inorg. Chim. Acta, 2019, vol. 492, p. 98. https://doi.org/10.1016/j.ica.2019.04.018

    Article  CAS  Google Scholar 

  38. Correa, R.S., Bomfim, L.M., Oliveira, K.M., Moreira, D.R., Soares, M.B., Ellena, J., and Batista, A.A., J. Inorg. Biochem., 2019, vol. 198, p. 110751. https://doi.org/10.1016/j.jinorgbio.2019.110751

  39. Teleb, S.M., Askar, M.E., El-Kalyoubi, S.A., and Gaballa, A.S., Bull. Chem. Soc. Ethiop., 2019, vol. 33, no. 2, p. 255. https://doi.org/10.1016/j.molstruc.2021.131143

  40. Khoshsoroor, S., Mohammadi, A., Khalili, B., and Mohammadi, S., J. Photochem. Photobiol. (A), 2020, vol. 388, p. 112208. https://doi.org/10.1016/j.jphotochem.2019.112208

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdou.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Ayash, S.R., Al-Noor, T.H. & Abdou, A. Synthesis and Characterization of Metals Complexes with Uracil and Uracil Derivatives (A Review). Russ J Gen Chem 93, 987–995 (2023). https://doi.org/10.1134/S107036322304028X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107036322304028X

Keywords:

Navigation