Skip to main content
Log in

Synthesis of Novel Antimicrobial Indazole-Linked 1,2,4-Triazolylthiadiazole and 4-Thiazolidinone Derivatives and Study of Their Molecular Modelling

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Indazole-based synthetic and natural products with inherent antimicrobial activity advancing the research and generating a large number of structurally diversified compounds. In this sequence we have designed, synthesized a series of 1,2,4-triazolyl-1,3,4-thiadiazoles, 4-thiazolidinones and screened for their in vitro antibacterial effect against different microorganisms, and antitubercular activity against M. tuberculosis H37RV. The biological studies revealed that such indazole analogues as 4-methoxyphenyl-4-thiazolidinone, 4-hydroxyphenyl-1,2,4-triazolyl-1,3,4-thiadiazole, 3-nitrophenyl-1,2,4-triazolyl-1,3,4-thiadiazole are active against S. epidermidis, and 3-nitrophenyl-1,2,4-triazolyl-1,3,4-thiadiazole, 2-chlorophenyl-1,2,4-triazolyl-1,3,4-thiadiazole exhibited excellent antitubercular activity against M. tuberculosis H37RV. In addition, the docking studies revealed the potential ligand 4-hydroxyphenyl-1,2,4-triazolyl-1,3,4-thiadiazole shows a highest amino acid interactions Arg43(A), Asp42(A), Phe41(A), Val65(A), Ile122(A), Ile16(A), Leu63(A), Gly14(A), Ile95(A), Thr39(A), Ser13(A) against M. tuberculosis enoyl reductase InhA of GSK625 (5JFO) and binding energy –8.48 kcal/mol. All the prepared compounds possess highest drug likeness properties and considering their bioactivity potentials, perhaps highly substitute indazole functionalized compounds could be the future antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.

REFERENCES

  1. Espinal, M.A., Tuberculosis, 2003, vol. 83, p. 44. https://doi.org/10.1016/s1472-9792(02)00058-6

    Article  PubMed  Google Scholar 

  2. World Health Organization (WHO). WHO G1:lobal Tuberculosis Report 2018; WHO: Geneve, Switzerland, 2018. http://www.who.int/tb/publications/global_report/en/

  3. Encinas, L., O’Keefe, H., Neu, M., Remuinan, M.J., Patel, A.M., Guardia, A., Davie, C.P., Perez-Macias, N., Yang, H., and Convery, M.A., J. Med. Chem., 2014, vol. 57, p. 1276. https://doi.org/10.1021/jm401326j

    Article  CAS  PubMed  Google Scholar 

  4. Kumari, A. and Singh, R.K., Bioorg. Chem., 2020, vol. 96, p. 103578. https://doi.org/10.1016/j.bioorg.2020.103578

    Article  CAS  PubMed  Google Scholar 

  5. Young, D.B., Perkins, M.D., Dunken, K., and Barry, C.E., J. Clin. Inνest., 2008, vol. 118, p. 1255. https://doi.org/10.1172/JCI34614

    Article  CAS  Google Scholar 

  6. Shrivastava, A., Chakraborty, A.K., and Upmanyu, N., Austin. J. Anal. Pharm. Chem., 2016, vol. 3, p. 1076.

    Google Scholar 

  7. Minu, M., Thangadurai, A., and Wakode, S.R., Bioorg. Med. Chem. Lett., 2009, vol. 19, p. 2960. https://doi.org/10.1016/j.bmcl.2009.04.052

    Article  CAS  PubMed  Google Scholar 

  8. Shi, J.J., Ji, F.H., He, P.L., Yang, Y.X., Tang, W., Zuo, J.P., and Li, Y.C., Chem. Med. Chem., 2013, vol. 8, p. 722. https://doi.org/10.1002/cmdc.201300083

    Article  CAS  PubMed  Google Scholar 

  9. Sapnakumari, M., Narayana, B., Sarojini, B.K., and Madhu, L.N., Med. Chem. Res., 2014, vol. 23, p. 2368. https://doi.org/10.1007/s00044-013-0835-6

    Article  CAS  Google Scholar 

  10. López-Vallejo, F., Castillo, R., and Yépez-Mulia, L., J. Biomol. Screening, 2011, vol. 16, p. 862. https://doi.org/10.1177/1087057111414902

    Article  CAS  Google Scholar 

  11. Angelova, V.T., Pencheva, T., Vassilev, N., Simeonova, R., Momekov, G., and Valcheva, V., Med. Chem. Res., 2019, vol. 28, p. 485. https://doi.org/10.1007/s00044-019-02293-w

    Article  CAS  Google Scholar 

  12. Cheekavolu, C. and Muniappan, M., J. Clin. Diagn. Res., 2016, vol. 10, p. FF01. https://doi.org/10.7860/JCDR/2016/19338.8465

  13. Yang, L.L., Chen, Y., He, J., Njoya, E.M., Chen, J., Liu, S., Xie, C., Huang, W., Wang, F., Wang, Z., Li, Y., and Qian, S., Bioorg. Med. Chem., 2019, vol. 27, p. 1087. https://doi.org/10.1016/j.bmc.2019.02.014

    Article  CAS  PubMed  Google Scholar 

  14. Woods, K.W., Fischer, J.P., Claiborne, A., Li, T., Thomas, S.A., Zhu, G.-D., Diebold, R.B., Liu, X., Shi, Y., and Klinghofer, V., Bioorg. Med. Chem., 2006, vol. 14, p. 6832. https://doi.org/10.1016/j.bmc.2006.06.047

    Article  CAS  PubMed  Google Scholar 

  15. Uemura, S.I., Kanbayashi, T., Wakasa, M., Satake, M., Ito, W., Shimizu, K., Shioya, T., Shimizu, T., and Nishino, S., Sleep Med., 2015, vol. 16, p. 1395. https://doi.org/10.1016/j.sleep.2015.05.021

    Article  PubMed  Google Scholar 

  16. Shehy, M.F., Abu-Hashem, A., and El-Telbani, E.M., Eur. J. Med. Chem., 2010, vol. 45, p. 1906. https://doi.org/10.1016/j.ejmech.2010.01.030

    Article  CAS  Google Scholar 

  17. Siddiqui, A.A., Mishra, R., Shaharyar, M., Husain, A., Rashid, M., and Pal, P., Bioorg. Med. Chem. Lett., 2011, vol. 21, p. 1023. https://doi.org/10.1016/j.bmcl.2010.12.028

    Article  CAS  PubMed  Google Scholar 

  18. Fard, J.K., Hamzeiy, H., Sattari, M., Eftekhari, A., Ahmadian, E., and Eghbal, M.A., Drug Res., 2016, vol. 66, p. 470. https://doi.org/10.1055/s-0042-110178

    Article  CAS  Google Scholar 

  19. Kanakaraju, S. and Suresh, L., RSC Adν., 2015, vol. 5, p. 29325. https://doi.org/10.1039/C4RA12670J

    Article  CAS  Google Scholar 

  20. Cressier, D., Prouillac, C., Hernandez, P., Amourette, C., Diserbo, M., Lion, C., and Rima, G., Bioorg. Med. Chem., 2009, vol. 17, p. 5275. https://doi.org/10.1016/j.bmc.2009.05.039

    Article  CAS  PubMed  Google Scholar 

  21. Abdel-Hamid, M.K., Abdel-Hafez, A.A., El-Koussi, N.A., Mahfouz, N.M., Innocenti, A., and Supuran, C.T., Bioorg. Med. Chem., 2007, vol. 15, p. 6975. https://doi.org/10.1016/j.bmc.2007.07.044

    Article  CAS  PubMed  Google Scholar 

  22. Zou, X.-J., Lai, L.H., Jin, G.Y., and Zhang, Z.X., J. Agric. Food. Chem., 2002, vol. 50, p. 3757. https://doi.org/10.1021/jf0201677

    Article  CAS  PubMed  Google Scholar 

  23. Rostom, S.A.F., El-Ashmawy, I.M., el Razik, H.A.A., Badr, M.H., and Ashour, H.M.A., Bioorg. Med. Chem., 2009, vol. 17, p. 882. https://doi.org/10.1016/j.bmc.2008.11.035

    Article  CAS  PubMed  Google Scholar 

  24. Othman, A.A., Kihel, M., and Amara, S., Arab. J. Chem., 2014, vol. 12, p. 1660. https://doi.org/10.1016/j.arabjc.2014.09.003

    Article  CAS  Google Scholar 

  25. Bloom, J.D., Dushin, R.G., Curran, K.J., Donahue, F., Norton, E.B., Terefenko, E., Jones, T.R., Ross, A.A., Feld, B., and Lang, S.A., Bioorg. Med. Chem. Lett., 2004, vol. 14, p. 3401. https://doi.org/10.1016/j.bmcl.2004.04.093

    Article  CAS  PubMed  Google Scholar 

  26. Upadhyay, P.K., Mishra, P., Rasayan J. Chem., 2017, vol. 10, p. 254. https://doi.org/10.7324/RJC.2017.1011573

    Article  CAS  Google Scholar 

  27. Kadi, A.A., Al-Abdullah, E.S., Shehata, I.A., Habib, E.E., Ibrahim, T.M., and El-Emam, A.A., Eur. J. Med. Chem., 2010, vol. 45, p. 5006. https://doi.org/10.1016/j.ejmech.2010.08.007

    Article  CAS  PubMed  Google Scholar 

  28. Kaur, H., Kumar, S., Vishwakarma, P., Sharma, M., Saxena, K.K., and Kumar, A., Eur. J. Med. Chem., 2010, vol. 45, p. 2777. https://doi.org/10.1016/j.ejmech.2010.02.060

    Article  CAS  PubMed  Google Scholar 

  29. Pattan, S.R., Kekare, P., Dighe, N.S., Nirmal, S.A., Musmade, D.S., Parjane, S.K., and Daithankar, A.V., J. Chem. Pharm. Res., 2009, vol. 1, p. 191.

    CAS  Google Scholar 

  30. Foroumadi, A., Kargar, Z., Sakhteman, A., Sharifzadeh, Z., Mohammadi, R.F., Kazemi, M., and Shafiee, A., Bioorg. Med. Chem. Lett., 2006, vol. 16, p. 1164. https://doi.org/10.1016/j.bmcl.2005.11.087

    Article  CAS  PubMed  Google Scholar 

  31. Ananda Kumar, D., Tejeswara Rao, A., Yugandhar, K., Sunil Kumar, N., Pradeep, P., Kishore, R., Jajula, K., and Kishore, P.V.V.N., Results in Chemistry, 2022, vol. 4, p. 100605. https://doi.org/10.1016/j.rechem.2022.100605

    Article  CAS  Google Scholar 

  32. Vikrant, S., Palekar, A.J., and Damle, S.R., Eur. J. Med. Chem., 2009, vol. 44, p. 5112. https://doi.org/10.1016/j.ejmech.2009.07.023

    Article  CAS  Google Scholar 

  33. Elsisi, D.M., Ragab, A., Elhenawy, A.A., Farag, A.A., Ali, A.M., and Ammar, Y.A., J. Mol. Struct., 2022, vol. 1247, p. 131314. https://doi.org/10.1016/j.molstruc.2021.131314

    Article  CAS  Google Scholar 

  34. Collins, L. and Franzblau, S.G., Antimicrob. Agents Chemother., 1997, vol. 41, p. 1004. https://doi.org/10.1128/AAC.41.5.1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Franzblau, S.G., Witzig, R.S., McLaughlin, J.C., Torres, P., Madico, G., Hernandez, A., Quenzer, V.K., Freguson, R.M., and Gilman, R.H.J., Clin. Microb., 1998, vol. 36, p. 362. https://doi.org/10.1128/JCM.36.2.362-366.1998

    Article  CAS  Google Scholar 

  36. Suling, W.J., Seitz, L.E., Pathak, V., Westbrook, L., Barrow, E.W., Zywno-van-ginkel, S., Renolds, R.C., Piper, J.R., and Barrow, W.W., Antimicrob. Agents Chemother., 2000, vol. 44, p. 2784. https://doi.org/10.1128/aac.44.10.2784-2793.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gopalarao, G., Umamaheswararao, K., Vishal, S., Allaka, T.R., and Bhaskara Rao, T., Chem. Biodiνers., 2022, vol. 19, p. e202200681. https://doi.org/10.1002/cbdv.202200681

  38. O’Boyle, N.M., Banck, M., James, C.A., Chris, M., Tim, V., and Geoffrey, R.H., J. Cheminform., 2011, vol. 3, p. 33. https://doi.org/10.1186/1758-2946-3-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Martínez-Hoyos, M., Perez-Herran, E., Gulten, G., Encinas, L., Álvarez-Gómez, D., Alvarez, E., FerrerBazaga, S., García-Pérez, A., Ortega, F., AnguloBarturen, I., Rullas-Trincado, J., Blanco Ruano, D., Torres, P., Castañeda, P., Huss, S., Fernández Menéndez, R., González Del Valle, S., Ballell, L., Barros, D., Modha, S., Dhar, N., Signorino-Gelo, F., McKinney, J.D., García-Bustos, J.F., Lavandera, J.L., Sacchettini, J.C., Jimenez, M.S., Martín-Casabona, N., Castro-Pichel, J., and Mendoza-Losana, A., EBioMedicine, 2016, vol. 8, p. 291. https://doi.org/10.1016/j.ebiom.2016.05.006

    Article  PubMed  PubMed Central  Google Scholar 

  40. Morris, G.M, Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., and Olson, A.J., J. Comput. Chem., 2009, vol. 16, p. 2785. https://doi.org/10.1002/jcc.21256

    Article  CAS  Google Scholar 

  41. Sampath, B., Gayatri, A.A., Muralidhar, P.R., Vijaya Kumar, B., Jagadeshwar, V., Ramulu, D., Bhaskar, K., Devender, K., Someswar Rao, S.,and Krisham Raju, A., Bioorg. Med. Chem. Lett., 2021, vol. 41, p. 128004. https://doi.org/10.1016/j.bmcl.2021.128004

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

A.K. Thandlam is thankful to our Research Supervisor P.V.V.N. Kishore (Indian Institute of Chemical Technology) for providing us required facilities and motivation for completion of the research work. The authors also extend gratitude towards Department of Sciences and Humanities, Vignan’s Foundation for Science, Technology & Research University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Rao Allaka or P. V. Ν. N. Kishore.

Ethics declarations

The authors declare no conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunga, A.K., Allaka, T.R., Shaik, A. et al. Synthesis of Novel Antimicrobial Indazole-Linked 1,2,4-Triazolylthiadiazole and 4-Thiazolidinone Derivatives and Study of Their Molecular Modelling. Russ J Gen Chem 93, 949–961 (2023). https://doi.org/10.1134/S1070363223040242

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223040242

Keywords:

Navigation