Skip to main content
Log in

Composite Films Based on Polyacrylonitrile and Detonation Nanodiamonds

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The properties of composite films based on polyacrylonitrile and detonation nanodiamonds were studied. It was found that the surface properties of the films (roughness and specific free surface energy) do not change when nanodiamonds are added. It was shown by autoradiography technique with tritium-labeled nanodiamonds that the distribution of particles in a film depends on the modification of their surface. Additives of particles and heat treatment affect the mechanical behavior of the films, and the samples become more brittle. Modification of the nanodiamonds with perfluorononanoic acid leads to a decrease in the strength of the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Gerasin, V.A., Antipov, E.M., Karbushev, V.V., Kulichikhin, V.G., Karpacheva, G.P., Talroze, R.V., and Kudryavtsev, Y.V., Russ. Chem. Rev., 2013, vol. 82, no. 4, p. 303. https://doi.org/10.1070/RC2013v082n04ABEH004322

    Article  CAS  Google Scholar 

  2. Shakun, A., Vuorinen, J., Hoikkanen, M., Poikelispaa, M., and Das, A., Composites A, 2014, vol. 64, p. 49. https://doi.org/10.1016/j.compositesa.2014.04.014

    Article  CAS  Google Scholar 

  3. Mochalin, V.N. and Gorotsi, Yu., Diamond Relat. Mat., 2015, vol. 58, p. 161. https://doi.org/10.1016/j.diamond.2015.07.003

    Article  CAS  Google Scholar 

  4. Karami, P., Khasraghi, S.S., Hashemi, M., Rabiei, S., and Shojaei, A., Adv. Colloid Interface Sci., 2019, vol. 269, p. 122. https://doi.org/10.1016/j.cis.2019.04.006

    Article  CAS  PubMed  Google Scholar 

  5. Shvidchenko, A.V., Eidelman, E.D., Vul’, A.Ya., Kuznetsov, N.M., Stolyarova, D.Yu., Belousov, S.I., and Chvalun, S.N., Adv. Colloid Interface Sci., 2019, vol. 268, p. 64. https://doi.org/10.1016/j.cis.2019.03.008

    Article  CAS  PubMed  Google Scholar 

  6. Neitzel, I., Mochalin, N., Niu, J., Cuadra, J., Kontsos, A., Palmese, G.R., and Gogotsi, Y., Polymer, 2012, vol. 53, p. 5965. https://doi.org/10.1016/j.polymer.2012.10.037

    Article  CAS  Google Scholar 

  7. Dolmatov, V.Yu., Russ. Chem. Rev., 2007, vol. 76, no. 4, p. 339. https://doi.org/10.1070/RC2007v076n04ABEH003643

    Article  CAS  Google Scholar 

  8. Kulakova, I.I., Phys. Solid State, 2004, vol. 46, p. 636. https://doi.org/10.1134/1.1711440

    Article  CAS  Google Scholar 

  9. Chukhaeva, S.I., Phys. Solid State, 2004, vol. 46, no. 4, p. 625. https://doi.org/10.1134/1.1711438

    Article  CAS  Google Scholar 

  10. Ozawa, M., Inaguma, М., Takahashi, М., Kataoka, F., Krüger, A., and Ōsawa, E., Adv. Mater., 2007, vol. 19, no. 9, p. 1201. https://doi.org/10.1002/adma.200601452

    Article  CAS  Google Scholar 

  11. Xu, X., Zhu, Y., Wang, B., Yu, Z., and Xie, S., J. Mater. Sci. Technol., 2005, vol. 21, no. 1, p. 109.

    Google Scholar 

  12. Moremune, S., Kotera, M., Nishino, T., Goto, K., and Hata, K., Macromolecules, 2011, vol. 44, no. 11, p. 4415. https://doi.org/10.1021/ma200176r

    Article  CAS  Google Scholar 

  13. Soboleva, O.A., Porodenko, E.V., and Serseev, V.G., Russ. J. Gen. Chem., 2017, vol. 87, no. 7, p. 1584. https://doi.org/10.1134/S1070363217070234

    Article  CAS  Google Scholar 

  14. Branson, B.T., Seif, M.A., Davidson, J.L., and Lukehart, C.M., J. Mater. Chem., 2011, vol. 21, p. 18832. https://doi.org/10.1039/c1jm12817e

    Article  CAS  Google Scholar 

  15. Zhang, Q., Mochalin, V.N., Neitzel, I., Hazeli, K., Niu, J., Kontsos, A., Zhou, J.G., Lelkes, P.I., and Gogotsi, Yu., Biomaterials, 2012, vol. 33, p. 5067. https://doi.org/10.1016/j.biomaterials.2012.03.063

    Article  CAS  PubMed  Google Scholar 

  16. Xu, X., Yu, Z., Zhu, Y., and Wang, B., J. Solid State Chem., 2005, vol. 178, p. 688. https://doi.org/10.1016/j.jssc.2004.12.025

    Article  CAS  Google Scholar 

  17. Zhang, X., Wang, S., Liu, M., Hui, J., Yang, B., Tao, L., and Wei, Y., Toxicol. Res., 2013, vol. 2, p. 335. https://doi.org/10.1039/c3tx50021g

    Article  CAS  Google Scholar 

  18. Maitra, U., Gomathi, A., and Rao, C.N.R., J. Exp. Nanosci., 2008, vol. 3, no. 4, p. 271. https://doi.org/10.1080/17458080802574155

    Article  CAS  Google Scholar 

  19. Soboleva, O.A., Khamenov, G.A., Dolmatov, V.Yu., and Sergeyev, V.G., Colloid J., 2017, vol. 79, no. 1, p. 136. https://doi.org/10.1134/S1061933X17010124

    Article  CAS  Google Scholar 

  20. Soboleva, O.A., Colloid J., 2018, vol. 80, no. 3, p. 320. https://doi.org/10.1134/S1061933X18030146

    Article  CAS  Google Scholar 

  21. Lin, C.R., Wei, D.H., BenDao, M.K., Chang, H.M., Chen, W.E., and Lee, J.A., Adv. Mater. Sci. Eng., 2014, article ID 937159. https://doi.org/10.1155/2014/937159

  22. Li, C.C. and Huang, C.L., Colloids Surf. A, 2010, vol. 353, p. 52. https://doi.org/10.1016/j.colsurfa.2009.10.019

    Article  CAS  Google Scholar 

  23. Mochalin, V.N. and Gorotsi, Y.J., Am. Chem. Soc., 2009, vol. 131, p. 4594. https://doi.org/10.1021/ja9004514

    Article  CAS  Google Scholar 

  24. Soboleva, O.A., Mendeleev Commun., 2022, vol. 32, no. 3, p. 411. https://doi.org/10.1016/j.mencom.2022.05.041

    Article  CAS  Google Scholar 

  25. Jee, A. and Lee, M., J. Nanosci. Nanotechnol., 2011, vol. 11, no. 1, p. 533. https://doi.org/10.1166/jnn.2011.4435

    Article  CAS  PubMed  Google Scholar 

  26. Attia, N.F., Rao, J.P., and Geckeler, K.E., J. Nanopart. Res., 2014, vol. 16, article no. 2361. https://doi.org/10.1007//11051-014-2361-y

  27. Nesmeyanov, A.N. and Nesmeyanov, N.A., Nachala organicheskoi khimii (Beginnings of Organic Chemistry), Moscow: Khimiya, 1974, vol. 1.

  28. Soboleva, O.A., Chernysheva, M.G., Myasnikov, I.Yu., Porodenko, E.V., and Badun, G.A., Colloid Polym. Sci., 2019, vol. 297, p. 445. https://doi.org/10.1007/s00396-018-4453-1

    Article  CAS  Google Scholar 

  29. Yadav, V., Sharma, P.P., Rajput, A., and Kulshrestha, V., AIP Conf. Proc., 2018, vol. 1942, p. 050077. https://doi.org/10.1063/1.5028708

    Article  CAS  Google Scholar 

  30. Gupta, A.K., Paliwai, D.K., and Bajaj, P., J. Appl. Polym. Sci., 1998, vol. 70, no. 13, p. 2703.

    Article  CAS  Google Scholar 

  31. Badun, G.A., Chernysheva, M.G., Yakovlev, R.Yu., Leonidov, N.B., Semenenko, M.N., and Lisichkin, G.V., Radiochim. Acta, 2014, vol. 102, no. 10, p. 941. https://doi.org/10.1515/ract-2013-2155

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out with the financial support of the state program “Colloidal chemistry as the basis for the creation of promising materials and nanostructured systems with controlled properties” (no. 121031300084-1). Thermogravimetric analysis was performed on equipment obtained under the Development Program of the Lomonosov Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Soboleva.

Ethics declarations

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soboleva, O.A., Porodenko, E.V. Composite Films Based on Polyacrylonitrile and Detonation Nanodiamonds. Russ J Gen Chem 93, 892–899 (2023). https://doi.org/10.1134/S1070363223040163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223040163

Keywords:

Navigation