Skip to main content
Log in

Features of Oxidation of Nanoporous Iron Obtained by Ferromanganese Dealloying in Molten Salts

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A wustite phase in the form of a whisker conglomerate, which is metastable at room temperature, was found on the surface of nanoporous iron obtained by electrochemical dealloying (selective anodic dissolution of a less noble metal) of ferromanganese. Features of the further iron oxidation were studied by TG-DSC and Х-ray phase analysis with a temperature sweep. A wide range of coexistence of three forms of iron oxides and relative stability of the magnetite phase up to 900°C have been described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Gharpure, K.M., Wu, S.Y., Li, C., Berestein, G.L., and Sood, A.K., Clin. Cancer. Res., 2015, vol. 21, no. 14, p. 3121. https://doi.org/10.1158/1078-0432.CCR-14-1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hartshorn, C.M., Bradbury, M.S., Lanze, G.M., Nel, A.E., Rao, J., Wang, A.Z., Wiesner, U.B., Yang, L., and Grodzinski, P., ACS Nano, 2018, vol. 12, no. 1, p. 24. https://doi.org/10.1021/acsnano.7b05108

    Article  CAS  PubMed  Google Scholar 

  3. Madamsetty, V.S., Mukherjee, A., and Mukherjee, S., Front. Pharmacol., 2019, vol. 10, p. 1264. https://doi.org/10.3389/fphar.2019.01264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Darson, J. and Mohan, M., Iron Oxide Nanoparticles and Nano-Composites: An Efficient Tool for Cancer Theranostics, London: IntechOpen, 2022, p. 1. https://doi.org/10.5772/intechopen.101934

  5. Siddiqi, K.S., Rahman, A., Tajuddin, and Husen, A., Nanoscale Res. Lett., 2016, vol. 11, no. 498, article no. 498. https://doi.org/10.1186/s11671-016-1714-0

  6. Kurapov, Y.A., Vazhnichaya, E.M., Litvin, S.E., Romanenko, S.M., Didikin, G.G., Devyatkina, T.A., Mokliak, Y.V., and Oranskaya, E.I., SN Appl. Sci., 2019, vol. 1, article no. 102. https://doi.org/10.1007/s42452-018-0110-z

  7. Ilbert, M. and Bonnefoy, V., Biochim. Biophys. Acta, 2013, vol. 1827, no. 2, p. 161. https://doi.org/10.1016/j.bbabio.2012.10.001

    Article  CAS  PubMed  Google Scholar 

  8. Karim, W., Kleibert, A., Hartfelder, U., Balan, A., Gobrecht, H., Bokhoven, J.A., and Ekinci, Y., Sci. Rep., 2016, vol. 6, article no. 18818. https://doi.org/10.1038/srep18818

  9. Saji, T., Isumi, M., Morimoto, J., Makino, Y., and Miyake, S., J. Jpn. Soc. Powder Powder Metallurgy, 2007, vol. 54, no. 8, p. 584. https://doi.org/10.2497/jjspm.54.584

    Article  CAS  Google Scholar 

  10. Kunc, F., Gallerneault, M., Kodra, O., Brinkmann, A., Lopinski, G.P., and Johnston, L.J., Anal. Bioanal. Chem., 2022, vol. 414, p. 4413. https://doi.org/10.1007/s00216-022-03906-x

    Article  CAS  Google Scholar 

  11. Jozwiak, W., Kaczmarek, E., Maniecki, T., Ignaczak, W., and Maniukiewicz, W., Appl. Catal. A, 2007, vol. 326, p. 17. https://doi.org/10.1016/j.apcata.2007.03.021

    Article  CAS  Google Scholar 

  12. Rahman, M.M., Aisiri, A.M., Jamal, A., Faisal, M., and Khan, S.B., Iron Oxide Nanoparticles. Nanomaterials, London: IntechOpen, 2011, p. 43. https://doi.org/10.5772/27698

  13. Jeong, M.H., Lee, D.H., and Bae, J.W., Int. J. Hydrogen Energy, 2015, vol. 40, p. 2613. https://doi.org/10.1016/j.ijhydene.2014.12.099

    Article  CAS  Google Scholar 

  14. Li, M., Endo, M., and Susa, M., ISIJ Int., 2017, vol. 57, no. 12, p. 2097. https://doi.org/10.2355/isijinternational.ISIJINT-2017-301

    Article  CAS  Google Scholar 

  15. Tamaura, Y., Buduan, P.V. and Katsura, T., J. Chem. Soc. Dalton Trans., 1981, no. 9, p. 1807. https://doi.org/10.1039/DT9810001807

    Article  Google Scholar 

  16. Shen, Y., Chong, J., Huang, Z., Tian, J., Zhang, W., Tang, X., Ding, W., and Du, X., Mater. Res. Express, 2019, vol. 6, no. 9, p. 096551. https://doi.org/10.1088/2053-1591/ab2eeb

    Article  CAS  Google Scholar 

  17. Wermink, W.N. and Versteeg, G.F., Ind. Eng. Chem. Res., 2017, vol. 56, no. 14, p. 3789. https://doi.org/10.1021/acs.iecr.6b04641

    Article  CAS  Google Scholar 

  18. Nekrasov, B.V., Osnovy obshchei khimii (Fundamentals of General Chemistry), Moscow: Khimiya, 1973, p. 340.

  19. Alymov, M.I., Seplyarskii, B.S., Rubtsov, N.M., Vadchenko, S.G., Kochetkov, R.А., Abzalov, N.I., and Kovalyov, I.D., Pure Appl. Chem., 2020, vol. 92, no. 8, p. 1321. https://doi.org/10.1515/pac-2019-1112

    Article  CAS  Google Scholar 

  20. Krietsch, A., Scheid, M., Schmidt, M., and Krause, U., J. Loss Prev. Process Ind., 2015, vol. 36, p. 237. https://doi.org/10.1016/j.jlp.2015.03.016

    Article  CAS  Google Scholar 

  21. Mohapatra, M. and Anand, S., Int. J. Eng. Sci. Technol., 2010, vol. 2, no. 6, p. 127. https://doi.org/10.4314/ijest.v2i8.63846

    Article  Google Scholar 

  22. Yan, Z., FitzGerald, S., Crawford, T.M., and Mefford, O.T., J. Magn. Magn. Mater., 2021, vol. 539, p. 168405. https://doi.org/10.1016/j.jmmm.2021.168405

    Article  CAS  Google Scholar 

  23. Mohanraj, S., Kodhaiyolii, S., Rengasamy, M., and Pugalenthi, V., Appl. Biochem. Biotechnol., 2014, vol. 173, no. 1, p. 318. https://doi.org/10.1007/s12010-014-0843-0

    Article  CAS  PubMed  Google Scholar 

  24. Kazantsev, S.O. and Kondranova, A.M., IOP Conf. Ser. Mater. Sci. Eng., 2018, vol. 447, p. 012070. https://doi.org/10.1088/1757-899X/447/1/012070

    Article  Google Scholar 

  25. Schwaminger, S.P., Surya, R., Filser, S., Wimmer, A., Weigl, F., Fraga-García, P., and Berensmeier, S., Sci. Rep., 2017, vol. 7, article no. 12609. https://doi.org/10.1038/s41598-017-12791-9

  26. Trindade, V., Borin, R., Hanjari, B.Z., Yang, S., Krupp, U., and Christ, H.-J., J. Mater. Res., 2005, vol. 8, no. 4, p. 365. https://doi.org/10.1590/S1516-14392005000400002

    Article  CAS  Google Scholar 

  27. Huang, W., Gatel, C., Li, Z.-A., and Richter, G., Mater. Des., 2021, vol. 208, p. 109914. https://doi.org/10.1016/j.matdes.2021.109914

    Article  CAS  Google Scholar 

  28. Gurushankar, K., Chinnaiah, K., Kannan, K., Gohulkumar, M., and Periyasamy, P., Rasayan J. Chem., 2021, vol. 14, no. 3, p. 1985. https://doi.org/10.31788/RJC.2021.1436299

    Article  CAS  Google Scholar 

  29. Palchoudhury, S., An, W., Xu, Y.L., Qin, Y., Zhang, Z.T., Chopra, N., Holler, R.A., Turner, C.H., and Bao, Y.P., Nano Lett., 2011, vol. 11, no. 3, p. 1141. https://doi.org/10.1021/nl200136j

    Article  CAS  PubMed  Google Scholar 

  30. Macher, T., Sherwood, J., Xu, Y., Lee, M., Dennis, G., Qin, Y., Daly, D., Swatloski, R.P., and Ba, Y., J. Nanomater., 2015, article ID 376579. https://doi.org/10.1155/2015/37657

  31. Rozhentsev, D. and Tkachev, N., J. Electrochem. Soc., 2021, vol. 168, no. 6, article ID 061504. https://doi.org/10.1149/1945-7111/ac07c3

  32. Rozhentsev, D.A., Mansurov, R.R., Tkachev, N.K., Russkikh, O.V., and Ostroushko, A.A., Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov (Physicochemical Aspects of Studying Clusters, Nanostructures and Nanomaterials), 2021, no. 13, p. 919. https://doi.org/10.26456/pcascnn/2021.13.919

  33. Ryabukhin, A.G., Teplyakov, Yu.N., and Pushkareva, T.A., Izv. Chelyab. NTs UrO RAN, 2001, no. 1, p. 71.

    Google Scholar 

  34. Lykasov, A.A., Karel, K., Men’, A.N., Varshavskii, M.T., and Mikhailov, G.G., Fizikokhimicheskiye svoistva vyustita i ego rastvorov (Physical and Chemical Properties of Wustite and its Solutions), Sverdlovsk: UNTs AN SSSR, 1987, p. 227.

  35. Bannykh, O.A., Budberg, P.B., Alisova, S.P., Guzey, L.S., Drits, M.E., Dobatkina, T.V., Lysova, E.V. Nikitina, N.I., Padeznova, E.M., Rokhlin, L.L., and Chernigova, O.P., Diagrammy sostoyaniya dvoinykh i Mnogokomponentnykh sistem na osnove zheleza (State Diagrams of Binary and Multicomponent Systems Based on Iron), Moscow: Metallurgiya, 1986, p. 41.

  36. Teplyakov, Yu.N., Vestn. YuURGU, 2009, no. 23, p. 36.

    Google Scholar 

Download references

Funding

The study was financially supported by the Russian Science Foundation (grant no. 22-23-20073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Rozhentsev.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozhentsev, D.A., Pershina, S.V., Petrova, S.A. et al. Features of Oxidation of Nanoporous Iron Obtained by Ferromanganese Dealloying in Molten Salts. Russ J Gen Chem 93, 886–891 (2023). https://doi.org/10.1134/S1070363223040151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223040151

Keywords:

Navigation