Skip to main content
Log in

Preparation, Thermal Properties, and Electrical Conductivity of Solutions of Pyridinium Ionic Liquids with Tetrachloroferrate Anion

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Thermal stability of N-alkylpyridinium tetrachloroferrates(III) [C5H5NR]FeCl4 [R = C4H9, (CH2)3CN, CH2C6H5, C8H17, and C10H21] in air in the range of 25–600°C has been studied, as well as the thermal stability of N-alkylpyridinium chlorides. The equivalent electrical conductivity of N-alkylpyridinium tetrachloroferrates(III) in acetonitrile solution at 25°C has been investigated. The ionic association constants Ka, the limiting molar electrical conductivity (λ0), and the standard Gibbs energy of the association (ΔG°) in the acetonitrile solutions have been calculated based on conductometric data via the Lee–Wheaton method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Seddon, K.R., J. Chem. Technol. Biotechnol., 1997, vol. 68, p. 351. https://doi.org/10.1002/(SICI)1097-4660(199704)68:4<351::AID-JCTB613>3.0.CO;2-4

    Article  CAS  Google Scholar 

  2. Hallett, J.P. and Welton, T., Chem. Rev., 2011, vol. 111, no. 5, p. 3508. https://doi.org/10.1021/cr1003248

    Article  CAS  PubMed  Google Scholar 

  3. Carmichael, A.J. and Seddon, K.R., J. Phys. Org. Chem., 2000, vol. 13, p. 591. https://doi.org/10.1002/1099-1395(200010)13:10<591::AID-POC305>3.0.CO;2-2

    Article  CAS  Google Scholar 

  4. Clark, K.D., Nacham, O., Purslow, J.A., Pierson, S.A., and Anderson, J.L., Anal. Chim. Acta, 2016, vol. 934, p. 9. https://doi.org/10.1016/j.aca.2016.06.011

    Article  CAS  PubMed  Google Scholar 

  5. Hayashi, S. and Hamaguchi, H., Chem. Lett., 2004, vol. 33, no. 12, p. 1590. https://doi.org/10.1246/cl.2004.1590

    Article  CAS  Google Scholar 

  6. Yoshida, Y. and Saito, G., Phys. Chem. Chem. Phys., 2010, vol. 12, p. 1675. https://doi.org/10.1039/B920046K

    Article  CAS  PubMed  Google Scholar 

  7. Deng, N., Li, M., Zhao, L., Lu, C., de Rooy, S.L., and Warner, I.M., J. Hazard. Mater., 2011, vol. 192, p. 1350. https://doi.org/10.1016/j.jhazmat.2011.06.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ko, N.H., Lee, J.S., Huh, E.S., Lee, H., Jung, K.D., Kim, H.S., and Cheong, M., Energy Fuels, 2008, vol. 22, p. 1687. https://doi.org/10.1021/ef7007369

    Article  CAS  Google Scholar 

  9. Wang, J., Yao, H., Nie, Y., Bai, L., Zhang, X., and Li, J., Ind. Eng. Chem. Res., 2012, vol. 51, p. 3776.

    Article  CAS  Google Scholar 

  10. Zhang, S., Zhang, Y., Wang, Y., Liu, S., and Deng, Y., Phys. Chem. Chem. Phys., 2012, vol. 14, p. 5132. https://doi.org/10.1039/C2CP23675C

    Article  CAS  PubMed  Google Scholar 

  11. Bwambok, D.K., Thuo, M.M., Atkinson, M.B.J., Mirica, K.A., Shapiro, N.D., and Whitesides, G.M., Anal. Chem., 2013, vol. 85, p. 8442. https://doi.org/10.1021/ac401899u

    Article  CAS  PubMed  Google Scholar 

  12. Bica, K., Gaertner, P., Eur. J. Org. Chem., 2008, vol. 2008, no. 20, p. 3453. https://doi.org/10.1002/ejoc.200800323

    Article  CAS  Google Scholar 

  13. Valkenberg M.H, de Castro, C., and Holderich, W.F., Appl. Catal. (A), 2001, vol. 215, p. 185. https://doi.org/10.1016/S0926-860X(01)00531-2

    Article  Google Scholar 

  14. Hayashi, S., Saha, S., and Hamaguchi, H., IEEE Trans. Magn., 2006, vol. 42, p. 12. https://doi.org/10.1109/TMAG.2005.854875

    Article  CAS  Google Scholar 

  15. Muraoka, J., Kamiya, N., and Ito, Y., J. Mol. Liq., 2013, vol. 182, p. 76. https://doi.org/10.1016/j.molliq.2013.03.012

    Article  CAS  Google Scholar 

  16. Tang, Y., Hu, X., Guan, P., Lin, X., and Li, X., J. Phys. Org. Chem., 2014, vol. 27, p. 498. https://doi.org/10.1002/poc.3291

    Article  CAS  Google Scholar 

  17. Zakrzewska, M.E., Paninho A.B, Molho, M.F., Nunes, A.V.M., Afonso, C.A.M., Rosatella, A.A., Lopes, J.M., and Najdanovic-Visak, V., J. Chem. Thermodyn., 2013, vol. 63, p. 123. https://doi.org/10.1016/j.jct.2013.03.014

    Article  CAS  Google Scholar 

  18. Nacham, O., Clark, K.D., Yu, H., and Anderson, J.L., Chem. Mater., 2015, vol. 27, p. 923. https://doi.org/10.1021/cm504202v

    Article  CAS  Google Scholar 

  19. Borun, A. and Bald, A., Ionics, 2016, vol. 22, p. 859. https://doi.org/10.1007/s11581-015-1613-x

    Article  CAS  Google Scholar 

  20. Papovic, S., Gadz, S., Bester-rogac, M., and Vranes, M., J. Chem. Thermodyn., 2016, vol. 102, p. 367. https://doi.org/10.1016/j.jct.2016.07.039

    Article  CAS  Google Scholar 

  21. Lam, P.H., Tran, A.T., Walczyk, D.J., Miller, A.M., and Yu, L., J. Mol. Liq., 2017, vol. 246, p. 215. https://doi.org/10.1016/j.molliq.2017.09.070

    Article  CAS  Google Scholar 

  22. Timperman, L., Galiano, H., Lemordant, D., and Anouti, M., Electrochem. Commun., 2011, vol. 13, p. 1112. https://doi.org/10.1016/j.elecom.2011.07.010

    Article  CAS  Google Scholar 

  23. Zhuravlev, O.E., Verolainen, N.V., and Voronchikhina, L.I., Russ. J. Appl. Chem., 2011, vol. 84, no. 7, p. 1158. https://doi.org/10.1134/S1070427211070068

    Article  CAS  Google Scholar 

  24. Zhuravlev, O.E., Karpenkov, A.Yu., Karpenkov, D.Yu., Voronchikhina, L.I., Russ. J. Gen. Chem., 2015, vol. 85, no. 4, p. 882. https://doi.org/10.1134/S1070363215040209

    Article  CAS  Google Scholar 

  25. Crosthwaite, J.M., Muldoon M.J, Dixon, J.K., Anderson, J.L., and Brennecke, J.F., J. Chem. Thermodynamics, 2005, vol. 37, p. 559. https://doi.org/10.1016/j.jct.2005.03.013

    Article  CAS  Google Scholar 

  26. Wyraykowski, D., Maniecki, T., Garda, M., Styezen, E., and Warnke, Z., J. Therm. Anal. Calor., 2007, vol. 90, p. 893. https://doi.org/10.1007/s1097300682079

    Article  Google Scholar 

  27. Safonova, L.P. and Kolker, A.M., Russ. Chem. Rev., 1992, vol. 61, no. 9, p. 959. https://doi.org/10.1070/RC1992v061n09ABEH001009

    Article  Google Scholar 

  28. Lee, W.H. and Wheaton, R.J., J. Chem. Soc., Faraday Trans. 2, 1979. vol. 75, no. 8, p. 1128. https://doi.org/10.1039/f29797501128

    Article  CAS  Google Scholar 

  29. Pethybridge, A.D. and Taba, S.S., J. Chem. Soc., Faraday Trans. 1, 1980, vol. 76, no. 9, p. 368. https://doi.org/10.1039/F19807600368

    Article  CAS  Google Scholar 

  30. Korotkova, E.N., Candidate Sci. (Chem.) Dissertation, Moscow, 2016.

  31. Chumak, V.L., Maksimyuk, M.R., Neshta, T.V., and Bosak, Yu.S., Vostochno-Evr. Zh. Pered. Tekhnol., 2013, vol. 62, no. 2/5, p. 59.

    CAS  Google Scholar 

  32. Zhuravlev, O.E., Verolainen, N.V., and Voronchikhina, L.I., Russ. J. Gen. Chem., 2010, vol. 80, no. 5, p. 1025. https://doi.org/10.1134/S1070363210050294

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. E. Zhuravlev.

Ethics declarations

Authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuravlev, O.E., Kaftanov, A.D. & Yulmasov, G.S. Preparation, Thermal Properties, and Electrical Conductivity of Solutions of Pyridinium Ionic Liquids with Tetrachloroferrate Anion. Russ J Gen Chem 93, 855–862 (2023). https://doi.org/10.1134/S1070363223040114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223040114

Keywords:

Navigation