Skip to main content
Log in

Synthesis and Extraction Properties of 4,5-Diphosphorylated Triazoles

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A method for the synthesis of 4,5-diphosphorylated 1,2,3-triazoles has been developed and their extraction properties with respect to U(VI), Th(IV), and lanthanide(III) ions have been studied. A synergistic effect was found in the extraction of metal ions with mixtures of 4,5-diphosphorylated 1,2,3-triazoles and dinonylnaphthalenesulfonic acid. The stoichiometry of the extracted complexes was determined, and the influence of the extractant structure and the HNO3 concentration in the aqueous phase on the efficiency of the metal ions extraction into the organic phase was considered. It was found that 4,5-diphosphorylated 1,2,3-triazole with the octyl substituent at nitrogen atom has the highest extraction ability with respect to actinides and lanthanides in nitric acid media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Myasoedov, B.F., Kalmykov, S.N., Kulyako, Yu.M., and Vinokurov, S.E., Geochem. Int., 2016, vol. 54, no. 13, p. 1156. https://doi.org/10.1134/S0016702916130115

    Article  CAS  Google Scholar 

  2. Alyapychev, M.Yu., Babain, V.A., and Ustynyuk, Yu.A., Russ. Chem. Rev., 2016, vol. 85, no. 9, p. 943. https://doi.org/10.1070/RCR4588

    Article  CAS  Google Scholar 

  3. Leoncini, A., Huskens, J., and Verboom, W., Chem. Soc. Rev., 2017, vol. 46, p. 7229. https://doi.org/10.1039/C7CS00574A

    Article  CAS  PubMed  Google Scholar 

  4. Wilson, A.M., Bailey, P.J., and Tasker, P.A., Chem. Soc. Rev., 2014, vol. 43, p. 123. https://doi.org/10.1039/C3CS60275C

    Article  CAS  PubMed  Google Scholar 

  5. Werner, E.J. and Biros, S.M., Org. Chem. Front., 2019, vol. 6, p. 2067. https://doi.org/10.1039/C9QO00242A

    Article  CAS  Google Scholar 

  6. Bhattacharyya, A. and Mohapatra, P.K., Radiochim. Acta, 2019, vol. 107, p. 931. https://doi.org/10.1515/ract-2018-3064

    Article  CAS  Google Scholar 

  7. Rozen, A.M. and Krupnov, B.V., Russ. Chem. Rev., 1996, vol. 65, no. 11, p. 973. https://doi.org/10.1070/RC1996v065n11ABEH000241

    Article  Google Scholar 

  8. Myasoedov, B.F., Chmutova, M.K., Kochetkova, N.E., Koiro, O.E., Pribylova, G.A., Nesterova, N.P., Medved, T.Y., and Kabachnik, M.I., Solv. Extr. Ion Exch., 1986, vol. 4, no. 1, p. 61. https://doi.org/10.1080/07366298608917853

    Article  CAS  Google Scholar 

  9. Horwitz, E.P., Martin, K.A., Diamond, H., and Kaplan, L., Solv. Extr. Ion Exch., 1986, vol. 4, no. 3, p. 449. https://doi.org/10.1080/07366298608917877

    Article  CAS  Google Scholar 

  10. Chmutova, M.K., Litvina, M.N., Pribylova, G.A., Ivanova, L.A., Smirnov, I.V., Shadrin, A.Yu., and Myasoedov, B.F., Radiochemistry, 1999, vol. 41, no. 4, p. 331.

    Google Scholar 

  11. Siddall, T.H., J. Inorg. Nucl. Chem., 1963, vol. 25, p. 883. https://doi.org/10.1016/0022-1902(63)80376-0

    Article  CAS  Google Scholar 

  12. Mrochek, J.E. and Banks, V.C., J. Inorg. Nucl. Chem., 1965, vol. 27, p. 589. https://doi.org/10.1016/0022-1902(65)80265-2

    Article  CAS  Google Scholar 

  13. Rozen, A.M., Nikolotova, Z.I., Kartasheva, N.A., and Yudina, K.S., Dokl. Akad. Nauk SSSR, 1975, vol. 222, no. 5, p. 1151.

    CAS  Google Scholar 

  14. Rozen, A.M., Nikolotova, Z.I., and Kartasheva, N.A., Radiochemistry, 1986, vol. 28, no. 3, p. 407.

    CAS  Google Scholar 

  15. Berkman, Z.A., Bertina, L.E., Kabachnik, M.I., Kossykh, V.G., Medved’, T.Ya., Nesterova, N.P., Rozen, A.M., and Yudina, K.S., Radiochemistry, 1975, vol. 17, no. 2, p. 210.

    CAS  Google Scholar 

  16. Rozen, A.M., Nikolotova, Z.I., Kartasheva, N.A., Medved’, T.Ya., Nesterova, N.P., Yudina, K.S., and Kabachnik, M.I., Radiochemistry,1976, vol. 18, no. 6, p. 846.

  17. Matveeva, A.G., Artyushin, O.I., Pasechnik, M.P., Stash, A.I., Vologzhanina, A.V., Matveev, S.V., Godovikov, I.A., Aysin, R.R., Moiseeva, A.A., Turanov, A.N., Karandashev, V.K., and Brel, V.K., Polyhedron, 2021, vol. 198, Article ID 115085. https://doi.org/10.1016/j.poly.2021.115085

  18. Turanov, A.N., Karandashev, V.K., Artyushin, O.I., Kostikova, G.V., Fedoseev, A.M., and Brel, V.K., Russ. J. Gen. Chem., 2022, vol. 92, p. 1479. https://doi.org/10.1134/S1070363222080163

    Article  Google Scholar 

  19. Turanov, A.N., Karandashev, V.K., Artyushin, O.I., and Brel, V.K., Solv. Extr. Ion Exch., 2020, vol. 38, no. 2, p. 166. https://doi.org/10.1080/07366299.2019.1708001

    Article  CAS  Google Scholar 

  20. Konopkina, E.A., Matveev, P.I., Huang, P.-W., Kirsanova, A.A., Chernysheva, M.G., Sumyanova, T.B., Domnikov, K.S., Shi, W-Q., Kalmykov, S.N., Petrov, V.G., and Borisova, N.E., Dalton Trans., 2022, vol. 51, p. 11180. https://doi.org/10.1039/D2DT01007K

    Article  CAS  PubMed  Google Scholar 

  21. Zakirova, G.G., Matveev, P.I., Mladentsev, D.Yu., Evsiunina, M.V., Tafeenko, V.A., and Borisova, N.E., Mendeleev Commun., 2019, vol. 29, no. 4, p. 463. https://doi.org/10.1016/j.mencom.2019.07.037

    Article  CAS  Google Scholar 

  22. Matveev, P.I., Borisova, N.E., Andreadi, N.G., Zakirova, G.G., Petrov, V.G., Belova, E.V., Kalmykov, S.N., and Myasoedov, B.F., Dalton Trans., 2019, vol. 48, p. 2554. https://doi.org/10.1039/C8DT04729D

    Article  CAS  PubMed  Google Scholar 

  23. Artyushin, O.I., Vologzhanina, A.V., Turanov, A.N., Karandashev, V.K., and Brel, V.K., Mendeleev Commun., 2021, vol. 31, p. 306. https://doi.org/10.1016/j.mencom.2021.05.009

    Article  CAS  Google Scholar 

  24. Rheingolg, A.L., Liable-Sands, L.M., and Trofimenko, S., Angew. Chem. Int. Ed., 2000, vol. 39, p. 3321. https://doi.org/10.1002/1521-3773(20000915)39:18<3321::AID-ANIE3321>3.0.CO;2-V

    Article  Google Scholar 

  25. Moya-Cabrera, M., Jancik, V., Castro, R.A., HerbstIrmer, R., and Roesky, H.W., Inorg. Chem., 2006, vol. 45, p. 5167. https://doi.org/10.1021/ic051567p

    Article  CAS  PubMed  Google Scholar 

  26. Alcantara-Garsia, J., Jancik, V., Barroso, J., Hidalgo-Bonilla, S., Cea-Olivares, R., Toscano, R.A, and Moya-Cabrera, M., Inorg. Chem., 2009, vol. 48, p. 5874. https://doi.org/10.1021/ic900166u

    Article  CAS  Google Scholar 

  27. Correa-Ascencio, M., Galvan-Miranda, E.K., Rascon-Cruz, F., Jimenez-Sandoval, O., Jimenez-Sandoval, S.J., Cea-Olivares, R., Jancik, V., Toscano, R.A, and Garcia-Montalvo, V., Inorg. Chem., 2010, vol. 49, p. 4109. https://doi.org/10.1021/ic902120e

    Article  CAS  PubMed  Google Scholar 

  28. Mukai, H. and Sohrin, Y., Inorg. Chim. Acta, 2009, vol. 362, p. 4526. https://doi.org/10.1016/j.ica.2009.06.01327

    Article  CAS  Google Scholar 

  29. Ramadan, A., Mahmoud, M., Khalifa, S.M., and Souka, N., J. Radioanal. Nucl. Chem. Lett., 1993, vol. 176, p. 457. https://doi.org/10.1007/bf02177682

    Article  CAS  Google Scholar 

  30. Turanov, A.N., Karandashev, V.K., and Yarkevich, A.N., Radiochemistry, 2018, vol. 60, no. 6, p. 520.

    Google Scholar 

  31. Turanov, A.N. and Karandashev, V.K., Solv. Extract. Ion Exch., 2018, vol. 36, p. 257. https://doi.org/10.1060/07366299.1459157

    Article  CAS  Google Scholar 

  32. Danesi, P.R., Chiarizia, R., and Scibona, G., J. Inorg. Nucl. Chem., 1973, vol. 35, no. 11, p. 3926. https://doi.org/10.1016/0022-1902(73)80089-2

    Article  CAS  Google Scholar 

  33. Polyanskii, K.B., Afanas’ev, V.V., and Bespalova, N.B., Patent RU 2616628 C2, 2017.

  34. Baek, S.-Y., Kim, Y.-W., Yoo, S.-H., Chung, K., Kim, N.-K., and Kim, J.-S., Ind. Eng. Chem. Res., 2012, vol. 51, no. 28, p. 9669. https://doi.org/10.1021/ie300316f

    Article  CAS  Google Scholar 

  35. Smith, Jr.R.H., Mehl, A.F., Shantz, Jr.D.L., Chmurny, G.N., and Michejda, C.J., J. Org. Chem., 1988, vol. 53, no. 7, p. 1467. https://doi.org/10.1021/jo00242a022

    Article  CAS  Google Scholar 

  36. Artyushin, O.I., Vorob’eva, D.V., Vasil’eva, T.P., Osipov, S.N., Roeschenthaler, G.-V., and Odinets, I.L., Heteroatom Chem., 2008, vol. 19, p. 293. https://doi.org/10.1002/hc.20420

    Article  CAS  Google Scholar 

  37. Tsvetkov, E.N., Bondarenko, N.A., Malakhova, I.G., and Kabachnik, M.I., Synthesis, 1986, no. 3, p. 198. https://doi.org/10.1055/s-1986-31510

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (INEOS RAS Contract no. 075-03-2023-642) using the scientific equipment of the Center for Research on the Structure of Molecules of the A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Smirnova.

Ethics declarations

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turanov, A.N., Karandashev, V.K., Artyushin, O.I. et al. Synthesis and Extraction Properties of 4,5-Diphosphorylated Triazoles. Russ J Gen Chem 93, 841–848 (2023). https://doi.org/10.1134/S1070363223040096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223040096

Keywords:

Navigation