Skip to main content
Log in

Synthesis and Luminescence Properties of Neodymium-Doped Oxochloride Lead Silicate Glasses

  • Selected articles originally published in Russian in Rossiiskii Khimicheskii Zhurnal (Russian Chemistry Journal)
  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

PbCl2–PbO–SiO2 glasses doped with Nd3+ ions were studied. The photoluminescence intensity, absorption, microhardness, refractive index, and characteristic temperatures of the glasses were measured experimentally. Amorphous structure of the investigated samples was proved by X-ray diffraction (XRD). Energy dispersive X-ray analysis (EDAX) confirmed the incorporation of lead chloride into the glasses. PbCl2 additions cause decreases in the glass transition, crystallization, and melting temperatures of the lead silicate glasses due to the formation of new structural and chemical units and to significant changes in the glass network. A decrease in microhardness is a consequence of the structural changes. The glasses have high refractive indices in the range of 1.78 to 2.09. The spectral-luminescent properties of the neodymium ions in the PbCl2-PbO-SiO2 glasses were investigated in detail for the first time. The absorption spectra show typical Nd3+ absorption bands in the visible and infrared spectral regions. The short-wave absorption band lies in the range of 350–380 nm, being shifted to the ultraviolet region by 40 nm relative to the binary PbO-SiO2 glasses. The synthesized glasses exhibit intense IR photoluminescence, typical for neodymium. The photoluminescence intensity increases with an increase in the lead chloride proportion in the lead silicate oxochloride glasses. The addition PbCl2 to the lead silicate glasses causes reduction of the maximum phonon energy of the matrix. The decrease in the phonon energy decreases the probability of nonradiative relaxation. The Nd3+ ion occurring in a low-energy environment luminesces more efficiently, since the excitation energy is not dissipated via the thermal vibrations of the matrix. The studied glasses are promising materials for the infrared spectral region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Bowman, S.R., Shaw, L.B., Feldman, B.J., and Ganem, J., IEEE J. Quantum Electron., 1996, vol. 32, pp. 646–649. https://doi.org/10.1109/3.488838

    Article  CAS  Google Scholar 

  2. Jones, I.K., Hömmerich, U., Brown, E., and Trivedi, S.B., Proc. SPIE – Int. Soc. Opt. Eng., 2014, vol. 8959, pp. 1–6. https://doi.org/10.1117/12.2037374

    Article  CAS  Google Scholar 

  3. Brown, E., Hömmerich, U., Bluiett, A.G., Trivedi, S.B., and Zavada, J.M., J. Appl. Phys., 2007, vol. 101, no. 11, pp. 1–7. https://doi.org/10.1063/1.2738418

    Article  CAS  Google Scholar 

  4. Kaminskii, A.A., Eichler, H.J., Findeisen, J., and Barta, Ch., Phys. Stat. Sol., 1998, vol. 206, pp. 3–4. https://doi.org/10.1002/(SICI)1521-3951(199803)206:13.0.CO;2-E

    Article  Google Scholar 

  5. Sokolov, I.A., Murin, I.V., Wiemhöfer, H.D., and Pronkin, A.A., Glass Phys. Chem., 2000, vol. 26, pp. 148–157. https://doi.org/10.1007/BF02735960

    Article  CAS  Google Scholar 

  6. Butenkov, D.A., Runina, K.I., and Petrova, O.B., Glass Ceram., 2021, vol. 78, pp. 135–139. https://doi.org/10.1007/s10717-021-00363-3

    Article  CAS  Google Scholar 

  7. Kiprianov, A.A. and Karpukhina, N.G., Glass Phys. Chem., 2006, vol. 32, pp. 1–27. https://doi.org/10.1134/S1087659606010019

    Article  CAS  Google Scholar 

  8. Dongmei, Zh., Wancheng, Zh., and Hongsheng, Zh., J. Non-Cryst. Solids, 2001, vol. 281, pp. 86–90. https://doi.org/10.1016/s0022-3093(00)00433-6

    Article  Google Scholar 

  9. Pisarska, J., J. Mol. Struct., 2008, vol. 887, nos. 1–3, pp. 201–204. https://doi.org/10.1016/j.molstruc.2008.02.044

    Article  CAS  Google Scholar 

  10. Singh, G.P., Kaur, P., Kaur, S., and Singh, D.P., Phys. B: Condens. Matter., 2011, vol. 406, no. 24, pp. 4652–4656. https://doi.org/10.1016/j.physb.2011.09.052

    Article  CAS  Google Scholar 

  11. Chethana, B., Viswanatha, R., Narayana, R.C., and Rao, K., Phys. Chem. Glass.: Eur. J. Glass Sci. Technol. B, 2015, vol. 56, no. 3, pp. 115–120. https://doi.org/10.13036/17533562.56.3.115

    Article  Google Scholar 

  12. Coon, J. and Shelby, J., J. Am. Ceram. Soc., 1990, vol. 73, no. 2, pp. 379–382. https://doi.org/10.1111/j.1151-2916.1990.tb06521.x

    Article  CAS  Google Scholar 

  13. Rao, K.J., Rao, B.G., and Elliott, S.R., J. Mater. Sci., 1985, vol. 20, pp. 1678–1682. https://doi.org/10.1007/BF00555271

    Article  CAS  Google Scholar 

  14. Dongmei, Zh., Wancheng, Zh., and Hongsheng, Zh., J. Non-Cryst. Solids, 2000, vol. 270, nos. 1–3, pp. 278–282. https://doi.org/10.1016/s0022-3093(00)00065-x

    Article  Google Scholar 

  15. Kohara, S., Ohno, H., Takata, M., Usuki, T., Morita, H., Suzuya, K., Akola, J., and Pusztai, L., Phys. Rev. B, 2010, vol. 82, pp. 1–7. https://doi.org/10.1103/PhysRevB.82.134209

    Article  CAS  Google Scholar 

  16. Mythili, N., Arulmozhi, K.T., and Fareed, S.S., Optik, 2016, vol. 127, no. 22, pp. 10817–10824. https://doi.org/10.1016/j.ijleo.2016.08.096

    Article  CAS  Google Scholar 

  17. Orlovskii, Y.V., Basiev, T.T., Pukhov, K.K., Doroshenko, M.E., Badikov, V.V., Badikov, D.V., and Mirov, S.B., Opt. Mater., 2007, vol. 29, no. 9, pp. 1115–1128. https://doi.org/10.1016/j.optmat.2006.05.009

    Article  CAS  Google Scholar 

  18. Chahal, R., Starecki, F., Doualan, J.-L., Němec, P., Trapananti, A., Prestipino, C., and Nazabal, V., Opt. Mater. Express., 2018, vol. 8, no. 6, pp. 1650–1671. https://doi.org/10.1364/ome.8.001650

    Article  CAS  Google Scholar 

  19. Nostrand, M.C., Page, R.H., Payne, S.A., Isaenko, L.I., and Yelisseyev, A.P., Opt. Soc. Am., 2001, vol. 18, pp. 264–276. https://doi.org/10.1364/JOSAB.18.000264

    Article  CAS  Google Scholar 

  20. Basiev, T.T., Danileiko, Yu.K., Dmitruk, L.N., Galagan, B.I., Moiseeva, L.V., Osiko, V.V., Sviridova, E.E., and Vinogradova, N.N., Opt. Mater., 2004, vol. 25, p. 295. https://doi.org/10.1016/j.optmat.2003.08.011

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Research was done using equipment of NRC “Kurchatov Institute” – IREA Shared Knowledge Center.

Funding

This study was financially supported by the Ministry of Science and Higher Education of the Russian Federation as part of the State Assignment (project no. FSSM-2020-0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Butenkov.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butenkov, D.A., Slastuhina, A.M., Runina, K.I. et al. Synthesis and Luminescence Properties of Neodymium-Doped Oxochloride Lead Silicate Glasses. Russ J Gen Chem 93, 680–685 (2023). https://doi.org/10.1134/S1070363223030222

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223030222

Keywords:

Navigation