Skip to main content
Log in

Recent Updates on Anticancer Activity of Betulin and Betulinic Acid Hybrids (A Review)

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The frequency of human being suffering from cancer is increasing annually throughout the world, but treatment of cancer is becoming more complex in recent years due to the multidrug resistance, creating an urgent demand for novel chemotherapeutics. Betulin and betulinic acid as lupane-type pentacyclic triterpenes distributed ubiquitously in the plant kingdom. Betulin and betulinic acid derivatives could hold the anticancer effects through different mechanisms, inclusive of induction of apoptosis and autophagy, antiangiogenesis, inhibition of invasion and migration, cell cycle arrest and multidrug resistance reversal. Notably, betulin and betulinic acid hybrids have been recently identified as promising candidates to explore novel anticancer chemotherapeutics since these derivatives could circumvent multidrug resistance, reduce the toxicity, and improve the efficacy. This review outlines the research progress regarding the anticancer potential of betulin and betulinic acid hybrids from 2012 to 2022, and the structure–activity relationship and mechanisms of action were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

REFERENCES

  1. Matthews, H.K., Bertoli, C., and Bruin, R.A.M., Nat. Rev. Mol. Cell Biol., 2022, vol. 23, p. 74. https://doi.org/10.1038/S41580-021-00404-3

  2. Santucci, C., Carioli, G., Bertuccio, P., Malvezzi, M., Pastorino, U., Boffetta, P., Negri, E., Bosetti, C., and Vecchia, C., Eur. J. Cancer Prevent., 2020, vol. 29, p. 367. https://doi.org/10.1097/CEJ.0000000000000594

  3. Siegel, R.L., Miller, K.D., Fuchs, H.E., and Jemal, A., CA Cancer J. Clin., 2022, vol. 72, p. 7. https://doi.org/10.3322/caac.21708

  4. Emran, T.B., Shahriar, A., Mahmud, A.R., Rahman, T., Abir, M.H., Siddiquee, M.F.R., Ahmed, Ho., Islam, A., and Hassan, M.M., Front. Oncol., 2022, vol. 12, e891652. https://doi.org/10.3389/fonc.2022.891652

  5. Behranvand, N., Nasri, F., Emameh, R.Z., Khani, P., Hosseini, A., Garssen, J., and Falak, R., Cancer Immunol. Immunother., 2022, vol. 71, p. 507. https://doi.org/10.1007/s00262-021-03013-3

  6. El-Hussein, A., Manoto, S.L., Ombinda-Lemboumba, S., Alrowaili, Z.A., and Mthunzi-Kufa, P., Anti-Cancer Agents Med. Chem., 2021, vol. 21, p. 149. https://doi.org/10.2174/1871520620666200403144945

  7. Peng, Y., Tang, D., Zhao, M., Kajiyama, H., Kikkawa, F., and Kondo, Y., Cancer Metast. Rev., 2020, vol. 39, p. 825. https://doi.org/10.1007/s10555-020-09910-w

  8. Pu, F., Chen, F., Zhang, Z., Shi, D., Zhong, B., Lv, X., Tucker, A.B., Liu, J., and Shao, Z., Genes Dis., 2022, vol. 9, p. 347. https://doi.org/10.1016/j.gendis.2020.11.019

  9. Sousa, J.L.C., Freire, C.S.R., Silvestre, A.J.D., and Silva, A.M.S., Molecules, 2019, vol. 24, p. e355. https://doi.org/10.3390/molecules24020355

  10. Hordyjewska, A., Ostapiuk, A., Horecka, A., and Kurzepa, J., Phytochem. Rev., 2019, vol. 18, p. 929. https://doi.org/10.1007/s11101-019-09623-1

  11. Lombrea, A., Scurtu, A. D., Avram, S., Pavel, I. Z., Turks, M., Lugiņina, J., Peipiņš, U., Dehelean, C. A., Soica, C., and Danciu, C., Int. J. Mol. Sci., 2021, vol. 22, e3676. https://doi.org/10.3390/ijms22073676

  12. Cháirez-Ramírez, M., Moreno-Jiménez, M., GonzálezLaredo, R., Gallegos-Infante, J., and Rocha-Guzmán, N., EXCLI J., 2016, vol. 15, p. 758. https://doi.org/10.17179/excli2016-642

  13. Zhang, X., Hu, J., and Chen, Y., Mol. Med. Rep., 2016, vol. 14, p. 4489. https://doi.org/10.3892/mmr.2016.5792

  14. Jiang, W., Li, X., Dong, S., and Zhou, W., Biomed. Pharmacother., 2021, vol. 142, e111990. https://doi.org/10.1016/j.biopha.2021.111990

  15. Ali-Seyed, M., Jantan, I., Vijayaraghavan, K., and Bukhari, S.N.A., Chem. Biol. Drug Des., 2016, vol. 87, p. 517. https://doi.org/10.1111/cbdd.12682

  16. Amiri, S., Dastghaib, S., Ahmadi, M., Mehrbod, P., Khadem, F., Behrouj, H., Aghanoori, M.R., Madrakian, T., and Ghavami, S., Biotech. Adv., 2020, vol. 38, p. e107409. https://doi.org/10.1016/j.biotechadv.2019.06.008

  17. Meunier, B., Acc. Chem. Res., 2008, vol. 41, p. 69. https://doi.org/10.1021/ar7000843

  18. Mishra, S.S. and Singh, P., Eur. J. Med. Chem., 2016, vol. 124, p. 500. https://doi.org/10.1016/j.ejmech.2016.08.039

  19. Zhong, Y., Liang, N., Liu, Y., and Cheng, M.S., Chin. J. Nat. Med., 2021, vol. 19, p. 641. https://doi.org/10.1016/S1875-5364(21)60097-3

  20. Zhang, D.M., Xu, H.G., Wang, L., Li, Y.J., Sun, P.H., Wu, X.M., Wang, G.J., Chen, W.M., and Ye, W.C., Med. Res. Rev., 2015, vol. 35, p. 1127. https://doi.org/10.1002/med.21353

  21. Lang, D. K., Kaur, R., Arora, R., Saini, B., and Arora, S., Anti-Cancer Agents Med. Chem., 2020, vol., 20, p. 2150. https://doi.org/10.2174/1871520620666200705214917

  22. Rani, D., Garg, V., and Dutt, R., Anti-Cancer Agents Med. Chem., 2021, vol. 21, p., 1957. https://doi.org/10.2174/1871520621666210112112422

  23. Ahmad, K., Khan, M.K.A., Baig, M.H., Imran, M., and Gupta, G.K., Anti-Cancer Agents Med. Chem., 2018, vol. 18, p. 46. https://doi.org/10.2174/1871520616666161221112042

  24. Jabir, N.R., Firoz, C.K., Bhushan, A., Tabrez, S., and Kamal, M.A., Anti-Cancer Agents Med. Chem., 2018, vol. 18, p. 6. https://doi.org/10.2174/1871520616666160520112839

  25. Sidova, V., Zoufaly, P., Pokorny, J., Dzubak, P., Hajduch, M., Popa, I., and Urban, M., PLoS ONE, 2017, vol. 12, E0171621. https://doi.org/10.1371/journal.pone.0171621

  26. Dangroo, N.A., Singh, J., Rath, S.K., Gupta, N., Qayum, A., Singh, S., and Sangwan, P.L., Steroids, 2017, vol. 123, p. 1. https://doi.org/10.1016/j.steroids.2017.04.002

  27. Khan, I., Guru, S.K., Rath, S.K., Chinthakindi, P.K., Singh, B., Koul, S., Bhushan, S., and Sangwan, P.L., Eur. J. Med. Chem., 2016, vol. 108, p. 104. https://doi.org/10.1016/j.ejmech.2015.11.018

  28. Suman, P., Patel, A., Solano, L., Jampana, G., Gardner, Z.S., Holt, C.M., and Jonnalagadda, S.C., Tetrahedron 2017, vol. 73, p. 4214. https://doi.org/10.1016/j.tet.2016.11.056

  29. Majeed, R., Hamid, A., Sangwan, P.L., Chinthakindi, P.K., Koul, S., Rayees, S., Singh, G., Rath, S.K., and Saxena, A.K., Cell Death and Disease 2014, vol. 50, p. E1459. https://doi.org/10.1038/cddis.2014.387

  30. Majeed, R., Sangwan, P.L., Chinthakindi, P.K., Khan, I., Dangroo, N.A., Thota, N., Hamid, A., Sharma, P.R., Saxena, A.K., and Koul, S., Eur. J. Med. Chem., 2013, vol. 63, p. 782. https://doi.org/10.1016/j.ejmech.2013.03.028

  31. Chakraborty, B., Dutta, D., Mukherjee, S., Das, S., Maiti, N.C., Das, P., and Chowdhury, C., Eur. J. Med. Chem., 2015, vol. 102, p. 93. https://doi.org/10.1016/j.ejmech.2015.07.035

  32. Dutta, D., Chakraborty, B., Sarkar, A., Chowdhury, C., and Das, P., BMC Cancer, 2016, vol. 16, e23. https://doi.org/10.1186/s12885-016-2055-1

  33. Ding, W., Sun, M., Luo, S., Xu, T., Cao, Y., Yan, X., and Wang, Y., Molecules, 2013, vol. 18, p. 10228. https://doi.org/10.3390/molecules180910228

  34. Grishko, V.V., Tolmacheva, I.A., Nebogatikov, V.O., Galaiko, N.V., Nazarov, A.V., Dmitriev, M.V., and Ivshina, I.B., Eur. J. Med. Chem., 2017, vol. 125, p. 629. https://doi.org/10.1016/j.ejmech.2016.09.065

  35. Zhang, H., Zhu, P., Liu, J., Lin, Y., Yao, H., Jiang, J., Ye, W., Wu, X., and Xu, J., Bioorg. Med. Chem. Lett., 2015, vol. 25, p. 728. https://doi.org/10.1016/j.bmcl.2014.11.058

  36. Tang, L., Lv, S.J., Wu, Z., Qian, M., Xu, Y., Gao, X., Wang, T., Xiao, J., Wei, H., Oncol. Lett., 2021, vol. 22, p. e605. https://doi.org/10.3892/ol.2021.12866

  37. Kazakova, O.B., Medvedeva, N.I., Lopatina, T.V., Apryshko, G.N., Pugacheva, R.B., Yavorskaya, N.P., Golubeva, I.S., and Tolstikov, G.A., Russ. J. Bioorg. Chem., 2015, vol. 41, p. 305. https://doi.org/10.1134/S1068162015020065

  38. Khusnutdinova, E.F., Petrova, A.V., Lobov, A.N., Kukovinets, O.S., Baev, D.S., and Kazakova, O.B., Nat. Prod. Res., 2021, vol. 35, p. 3850. https://doi.org/10.1080/14786419.2020.1744139

  39. Zhang, H., Li, F., Zhu, P., Liu, J., Yao, H., Jiang, J., Ye, W., Wu, X., and Xu, J., Chem. Biol. Drug Des., 2015, vol. 86, p. 424. https://doi.org/10.1111/cbdd.12543

  40. Krishna, C., Bhargavi, M.V., and Krupadanam, B.L.D., Russ. J. Gen. Chem., 2018, vol. 88, p. 312. https://doi.org/10.1134/S1070363218020196

  41. Krishna, C., Bhargavi, M.V., and Krupadanam, B.L.D. J. Asian Nat. Prod. Res., 2016, vol. 18, p. 1158. https://doi.org/10.1080/10286020.2016.1196193

  42. Borková, L., Frydrych, I., Jakubcová, N., Adámek, R., Lišková, B., Gurská, S., Medvedíková, M., Hajdúch, M., and Urban, M., Eur. J. Med. Chem., 2020, vol. 185, e111806. https://doi.org/10.1016/j.ejmech.2019.111806

  43. Li, S., and Hu, S.M., Trop. J. Pharm. Res., 2020, vol., 19, p. 957. https://doi.org/10.4314/tjpr.v19i5.7

  44. Shaik, B., Deeb, O., Agrawal, V.K., and Gupta, S.P., Lett. Drug Des. Dis., 2017, vol. 14, p. 83. https://doi.org/10.2174/1570180813999160721160833

  45. Qi, S.Z., Zhang, X.X., Jin, Y., Wang, M., Long, L.P., Jing, W.H., Song, K.R., Wang, D., and Gao, H.Y., Bioorg. Chem., 2021, vol. 111, e104886. https://doi.org/10.1016/j.bioorg.2021.104886

  46. Ren, Y., Anaya-Eugenio, G.D., Czarnecki, A.A., Ninh, T.N., Yuan, C., Chai, H.B., Soejarto, D.D., Burdette, J.E., Blanco, E.J.C., and Kinghorn, A.D. Bioorg. Med. Chem., 2018, vol. 26, p. 4452. https://doi.org/10.1016/j.bmc.2018.07.025

  47. Qi, S.Z., Liu, T., Wang, M., Zhang, X.X., Yang, Y.R., Jing, W.H., Long, L.P., Song, K.R., Jin, Y., and Gao, H.Y., Bioorg. Chem., 2021, vol. 107, e104628. https://doi.org/10.1016/j.bioorg.2021.104628

  48. Gupta, S., Kumar, S., Kushwaha, P.P., Prajapati, K.S., Shuaib, M., Singh, A.K., and Vardhan, P.S. Chem.-Biol. Interact., 2020, vol. 328, e109200. https://doi.org/10.1016/j.cbi.2020.109200

  49. Yu, P., Li, D.D., Ni, J.J., Xia, C.J., Wang, Z.Z., Xiao, W., Ding, G., and Zhao, L.G., Chem. Nat. Compd., 2019, vol. 55, p. 1080. https://doi.org/10.1007/s10600-019-02899-x

  50. Ganaie, B.A., Shahid, M., Rashid, A., Ara, T., Banday, J.A., Malik, F., and Bhat, B.A., Chem. Biodiversity 2021, vol. 18, E2100292. https://doi.org/10.1002/cbdv.202100292

  51. Khusnutdinova, E., Galimova, Z., Lobov, A., Baikova, I., Kazakova, O., Thu, H.N.T., Tuyen, N.V., Serbian, I., and Hoenke, S., Nat. Prod. Res., 2022, vol. 36, p. 5189. https://doi.org/10.1080/14786419.2021.1922904

  52. Tanasova, M., Begoyan, V.V., and Weseliński, Ł.J., Curr. Top. Med. Chem., 2018, vol. 18, p. 467. https://doi.org/10.2174/1568026618666180523110837

  53. Franconetti, A., López, Ó., and Fernandez-Bolanos, J.G. Curr. Med. Chem., 2020, vol. 27, p. 1206. https://doi.org/10.2174/0929867325666180719114150

  54. Eignerova, B., Tichy, M., Krasulova, J., Kvasnica, M., Rarova, L., Christova, R., Urban, M., BednarczykCwynar, B., Hajduch, M., and Sarek, J., Eur. J. Med. Chem., 2017, vol. 140, p. 403. https://doi.org/10.1016/j.ejmech.2017.09.041

  55. Zhang, H., Zhu, P., Liu, J., Yang, X., Xu, S., Yao, H., Jiang, J., Ye, W., Wu, X., and Xu, J., Eur. J. Med. Chem., 2014, vol. 87, p. 159. https://doi.org/10.1016/j.ejmech.2014.09.058

  56. Yamansarov, E.Y., Skvortsov, D.A., Lopukhov, A.V., Kovalev, S.V., Evteev, S.A., Petrov, R.A., Klyachko, N.L., Ivanenkov, Y.A., and Majouga, A.G., Russ. Chem. Bull., 2019, vol. 68, p. 2331. https://doi.org/10.1007/s11172-019-2707-9

  57. Spivak, A.Y., Galimshina, Z.R., Nedopekina, D.A., and Odinokov, V.N. Chem. Nat. Compd., 2018, vol. 54, p. 315. https://doi.org/10.1007/s10600-018-2331-1

  58. Bache, M., Bernhardt, S., Passin, S., Wichmann, H., Hein, A., Zschornak, M., Kappler, M., Taubert, H., Paschke, R., and Vordermark, D., Int. J. Mol. Sci., 2014, vol. 15, p., 19777. https://doi.org/10.3390/ijms151119777

  59. Zaraei, S.O., Abduelkarem, A.R., Anbar, H.S., Kobeissi, S., Mohammad, M., Ossama, A., and ElGamal, M.I. Eur. J. Med. Chem., 2019, vol. 179, p. 257. https://doi.org/10.1016/j.ejmech.2019.06.052

  60. Chen, H., Deng, X., Fang, G., Tang, Z., and Wan, Y., Eur. J. Med. Chem., 2021, vol. 226, e113837 https://doi.org/10.1016/j.ejmech.2021.113837

  61. Bache, M., Eiselt, Y., Funtan, A., Kahnt, M., Paschke, R., Petrenko, M., Serbian, I., Keßler, J., and Pflüger, E., Eur. J. Med. Chem., 2021, vol. 224, e113721. https://doi.org/10.1016/j.ejmech.2021.113721

  62. Bache, M., Münch, C., Güttler, A., Wichmann, H., Theuerkorn, K., Emmerich, D., Paschke, R., and Vordermark, D., Int. J. Mol. Sci., 2015, vol. 16, p. 26249. https://doi.org/10.3390/ijms161125953

  63. Vanchanagiri, K., Emmerich, D., Bruschke, M., Bache, M., Seifert, F., Csuk, R., Vordermark, D., and Paschke, R., Chem-Biol. Interact., 2018, vol. 284, p. 12. https://doi.org/10.1016/j.cbi.2018.02.014

  64. Weber, L.A., Funtan, A., Paschke, R., Delarocque, J., Kalbitz, J., Meißner, J., Feige, K., Kietzmann, M., and Cavalleri, J.M.V., PLoS ONE, 2020, vol. 15, E0241448. https://doi.org/10.1371/journal.pone.0241448

  65. Güttler, A., Eiselt, Y., Funtan, A., Thiel, A., Petrenko, M., Keßler, J., Thondorf, I., Paschke, R., Vordermark, D., and Bache, M., Int. J. Mol. Sci., 2021, vol. 22, e8808. https://doi.org/10.3390/ijms22168808

  66. Wiemann, J., Heller, L., Perl, V., Kluge, R., Ströhl, D., and Csuk, R., Eur. J. Med. Chem., 2015, vol. 106, p. 194. https://doi.org/10.1016/j.ejmech.2015.10.043

  67. Anh, D.T.T., Cuc, D.T., Giang, L.N.T., Hien, N.T., Doan, V.N., Thanh, N.H., Tuyen, N.V., and Kiem, P.V., Nat. Prod. Commun., 2020, vol. 15, p. 1. https://doi.org/10.1177/1934578X20931967

  68. Pal, A., Ganguly, A., Chowdhuri, S., Yousuf, M., Ghosh, A., Barui, A.K., Kotcherlakota, R., Adhikari, S., and Banerjee, R., ACS Med. Chem. Lett., 2015, vol. 6, p. 612. https://doi.org/10.1021/acsmedchemlett.5b00095

  69. Bildziukevich, U., Rárová, L., Šaman, D., and Wimmer, Z., Eur. J. Med. Chem., 2018, vol. 145, p. 41. https://doi.org/10.1016/j.ejmech.2017.12.096

  70. Giniyatullina, G.V., Petrova, A.V., Mustafin, A.G., Zileeva, Z.R., Kuzmina, U.S., Vakhitova, Y.V., and Kazakova, O.B., ChemistrySelect 2021, vol. 6, p. 13253. https://doi.org/10.1002/slct.202101687

  71. Härmä, V., Haavikko, R., Virtanen, J., Ahonen, I., Schukov, H.P., Alakurtti, S., Purev, E., Nees, M., and Oksman-Caldentey, K.M., PLoS ONE, 2015, vol. 10, E0126111. https://doi.org/10.1371/journal.pone.0126111

  72. Giniyatullina, G.V. and Kazakova, O.B., Chem. Nat. Compd., 2021, vol. 57, p. 698. https://doi.org/10.1007/s10600-021-03453-4

  73. Liu, J., Zhu, Z., Tang, J., Lin, Q., Li, C., and Sun, J., Anti-Cancer Agents Med. Chem., 2017, vol. 17, p. 241. https://doi.org/10.2174/1871520616666160926115747

  74. Liu, J.H., Tang, J., Zhu, Z.F., and Chen, L., J. Asian Nat. Prod. Res., 2014, vol. 16, p. 34. https://doi.org/10.1080/10286020.2013.870998

  75. Zhang, L., Hou, S., Li, B., Pan, J., Jiang, L., Zhou, G., Gu, H., Zhao, C., Lu, H., and Ma, F., OncoTargets Ther., 2018, vol. 11, p. 361. https://doi.org/10.2147/OTT.S154412

  76. Tsepaeva, O.V., Nemtarev, A.V., Salikhova, T.I., Abdullin, T. I., Grigoreva, L.R., Khozyainova, S.A., and Mironov, V.F., Anti-Cancer Agents Med. Chem., 2020, vol., 20, p. 286. https://doi.org/10.2174/1871520619666191014153554

  77. Nedopekina, D.A., Gubaidullin, R.R., Odinokov, V.N., Maximchik, P.V., Zhivotovsky, B., Bel’skii, Y.P., Khazanov, V.A., Manuylova, A.V., Gogvadze, V., and Spivak, A.Y., MedChemComm., 2017, vol. 18, p., 1934. https://doi.org/10.1039/C7MD00248C

  78. Spivak, A.Y., Nedopekina, D.A., Khalitova, R.R., Gubaidullin, R.R., Odinokov, V.N., Bel’skii, Y.P., Bel’skaya, N.V., and Khazanov, V.A., Med. Chem. Res., 2017, vol. 26, p. 518. https://doi.org/10.1007/s00044-016-1771-z

  79. Tsepaeva, O.V., Nemtarev, A.V., Abdullin, T.I., Grigor’eva, L.R., Kuznetsova, E.V., Akhmadishina, R.A., Ziganshina, L.E., Cong, H.H., and Mironov, V.F.D., J. Nat. Prod., 2017, vol. 80, p. 2232. https://doi.org/10.1021/acs.jnatprod.7b00105

  80. Kodr, D., Stanková, J., Rumlová, M., Džubák, P., Řehulka, J., Zimmermann, T., Křížová, I., Drašar, P.B., and Jurášek, M., Biomed., 2021, vol. 9, e1104. https://doi.org/10.3390/biomedicines9091104

  81. Yang, S., Liang, N., Li, H., Xue, W., Hu, D., Jin, L., Zhao, Q., and Yang, S., Chem. Cent. J., 2012, vol. 6, e141. https://doi.org/10.1186/1752-153X-6-141

  82. Yang, S.J., Liu, M.C., Zhao, Q., Hu, D.Y., Xue, W., and Yang, S., Eur. J. Med. Chem., 2015, vol. 96, p. 58. https://doi.org/10.1016/j.ejmech.2015.04.006

  83. Cui, H.W., He, Y., Wang, J., Gao, W., Liu, T., Qin, M., Wang, X., Yi, Z., and Qiu, W.W., Eur. J. Med. Chem., 2015, vol. 95, p. 240. https://doi.org/10.1016/j.ejmech.2015.03.048

  84. Lu, L., Zhang, H., Liu, J., Liu, Y., Wang, Y., Xu, S., Zhu, Z., and Xu, J., Eur. J. Med. Chem., 2019, vol. 182, e111659. https://doi.org/10.1016/j.ejmech.2019.111659

  85. Chen, J.J., Patel, A., Sodani, K., Xiao, Z.J., Tiwari, A.K., Zhang, D.M., Li, Y.J., Chen, S.D., and Chen, Z.S., PLoS ONE 2013, vol. 8, E74573. https://doi.org/10.1371/journal.pone.0074573

  86. Haeri, H.H., Hinderberger, D., Hussain, H., Kaluđerović, G.N., Morgan, I., Roos, A.H., Sultani, H.N., and Westermann, B., Int. J. Mol. Sci., 2021, vol. 22, e7125. https://doi.org/10.3390/ijms22137125

  87. Csuk, R., Nitsche, C., Sczepek, R., Schwarz, S., and Siewert, B., Arch. Pharm., 2013, vol. 346, p. 232. https://doi.org/10.1002/ardp.20

  88. Yamansarov, E.Y., Saltykova, I.V., Kovalev, S.V., Petrov, I.A., Shkil, D.O., Seleznev, E.I., Beloglazkina, E.K., and Majouga, A.G., Russ. Chem. Bull., 2019, vol. 68, p. 855. https://doi.org/10.1007/s11172-019-2496-1

  89. Khlebnicova, T.S.; Piven, Y.A., Lakhvich, F.A., Sorokina, I.V., Frolova, T.S., Baev, D.S., and Tolstikova, T.G., Anti-Inflammatory & Anti-Allergy Agents Med. Chem., 2020, vol., 19, p. 254. https://doi.org/10.2174/1871523018666190426152049

  90. Khlebnikova, T.S., Piven, Y.A., Lakhvich, F.A., Frolova, T.S., Sorokina, I.V., and Tolstikova, T.G., Chem. Nat. Compd., 2018, vol. 54, p. 1100. https://doi.org/10.1007/s10600-018-2565-y

  91. Emmerich, D., Vanchanagiri, K., Baratto, L.C., Schmidt, H., Paschke, R., Eur. J. Med. Chem., 2014, vol. 75, p. 460. https://doi.org/10.1016/j.ejmech.2014.01.031

  92. Özdemir, Z., Šaman, D., Rárová, L., Rybková, M., Vlk, M., and Wimmer, Z., Molecules, 2020, vol. 25, e3546. https://doi.org/10.3390/molecules25153546

  93. Ackermann, A., Karagöz, A.Ç., Ghoochani, A., Buchfelder, M., Eyüpoglu, I., Tsogoeva, S.B., and Savaskan, N., Oncotarget, 2017, vol. 8, p. 61457. https://doi.org/10.18632/oncotarget.18390

  94. Couto, N.M.G.D., Willig, J.B., Ruaro, T.C., Oliveira, D.L.D., Buffon, A., Pilger, D.A., Arruda, M.S.P., Miron, D., Zimmer, A.R., and Gnoatto, S.C.B., Anti-Cancer Agents Med. Chem., 2020, vol., 20, 622. https://doi.org/10.2174/1871520620666200124111634

  95. Wolfram, R.K., Fischer, L., Kluge, R., Ströhl, D., Al-Harrasi, A., and Csuk, R., Eur. J. Med. Chem., 2018, vol. 155, p. 869. https://doi.org/10.1016/j.ejmech.2018.06.051

  96. Pattnaik, B., Lakshmi, J.K., Kavitha, R., Jagadeesh, B., Bhattacharjee, D., Jain, N., and Mallavadhani, U.V., J. Asian Nat. Prod. Res., 2017, vol., 19, p. 260. https://doi.org/10.1080/10286020.2016.1240169

  97. Xu, B., Yan, W.Q., Xu, X., Wu, G.R., Zhang, C.Z., Han, Y.T., Chu, F.H., Zhao, R., Wang, P.L., and Lei, H.M., Eur. J. Med. Chem., 2017, vol. 130, p. 26. https://doi.org/10.1016/j.ejmech.2017.02.036

  98. Ngoc, T.D., Moons, N., Kim, Y., Borggraeve, W.D., Mashentseva, A., Andrei, G., Snoeck, R., Balzarini, J., and Dehaen, W., Bioorg. Med. Chem., 2014, vol. 22, p. 3292. https://doi.org/10.1016/j.bmc.2014.04.061

  99. Pokorny, J., Krajcovicova, S., Hajduch, M., Holoubek, M., Gurska, S., Dzubak, P., Volna, T., Popa, I., and Urban, M., Future Med. Chem., 2018, vol. 10, p. 483. https://doi.org/10.4155/fmc-2017-0171

  100. Baratto, L.C., Porsani, M.V., Pimentel, I.C., Netto, A.B.P., Paschke, R., and Oliveira, B.H., Eur. J. Med. Chem., 2013, vol. 68, p. 121. https://doi.org/10.1016/j.ejmech.2013.07.012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wang.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Shi, Ym. Recent Updates on Anticancer Activity of Betulin and Betulinic Acid Hybrids (A Review). Russ J Gen Chem 93, 610–627 (2023). https://doi.org/10.1134/S1070363223030180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223030180

Keywords:

Navigation