Skip to main content
Log in

Comparative Characteristics of the Nearest Environment Structures of Metal Ions in Water and Acetonitrile (A Review)

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The published data of various methods on the structural characteristics of the nearest environment of some monatomic inorganic cations in aqueous solutions and in acetonitrile under standard conditions are summarized. The structures of the first solvation shells of cations in these solvents have been compared quantitatively. It is suggested that for these systems, the structure of solvation shells of cations are independent of the solvent, and is determined only by the physicochemical nature of the ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Smirnov, P.R., Russ. J. Gen. Chem., 2020, vol. 90, no. 9, p. 1693. https://doi.org/10.1134/S1070363220090169

    Article  CAS  Google Scholar 

  2. Smirnov, P.R., Russ. J. Gen. Chem., 2021, vol. 91, no. 3, p. 429. https://doi.org/10.1134/S1070363221030129

    Article  CAS  Google Scholar 

  3. Radnai, T. and Jedlovszky, P., J. Phys. Chem., 1994, vol. 98, no. 23, p. 5994. https://doi.org/10.1021/j100074a028

    Article  CAS  Google Scholar 

  4. Takamuku, T., Tabata, M., Yamaguchi, A., Nishimoto, J., Kumamoto, M., Wakita, H., and Yamaguchi, T., J. Phys. Chem. B, 1998, vol. 102, no. 44, p. 8880. https://doi.org/10.1021/jp9824297

    Article  CAS  Google Scholar 

  5. Cohen, S.R., Plazanet, M., Rols, S., Voneshen, D.J., Fourkas, J.T., and Coasne, B., J. Mol. Liq., 2022, vol. 348, p. 118423. https://doi.org/10.1016/j.molliq.2021.118423

    Article  CAS  Google Scholar 

  6. Cartailler, T., Kunz, W., Turq, P., and BellisentFunel, M.-C., J. Phys. Condens. Matter., 1991, vol. 3, no. 47, p. 9511.

    Article  CAS  Google Scholar 

  7. Kunz, W., Barthel, J., Klein, L., Cartailler, T., Turq, P., and Reindl, B., J. Solut. Chem., 1991, vol. 20, no. 9, p. 875.

    Article  CAS  Google Scholar 

  8. Bamba, S., Chabanel, M., Legoff, D., and Proutiére, A., J. Mol. Struct., 1991, vol. 246, nos. 1–2, p. 155. https://doi.org/10.1016/0022-2860(91)80022-V

    Article  CAS  Google Scholar 

  9. Camus, M.N., Megnassan, E., Proutiere, A., and Chabanel, M., J. Mol. Struct., 1993, vol. 295, p. 155. https://doi.org/10.1016/0022-2860(93)85017-O

    Article  CAS  Google Scholar 

  10. Barthel, J. and Deser, R., J. Sol. Chem., 1994, vol. 23, no. 10, p. 1133.

    Article  CAS  Google Scholar 

  11. Seo, J.S., Cheong, B.S., and, Cho, H.G., Spectrochim. Acta A, 2002, vol. 58, no. 8, p. 1747. https://doi.org/10.1016/S1386-1425(01)00636-9

    Article  Google Scholar 

  12. Xuan, X., Zhang, H., Wang, J., and Wang, H., J. Phys. Chem. A, 2004, vol. 108, no. 37, p. 7513. https://doi.org/10.1021/jp047313r

    Article  CAS  Google Scholar 

  13. Barthel, J., Buchner, R., and Wismeth, E., J. Solut. Chem., 2000, vol. 29, no. 10, p. 937.

    Article  CAS  Google Scholar 

  14. Spångberg, D. and Hermansson, K., Chem. Phys., 2004, vol. 300, nos. 1–3, p. 165. https://doi.org/10.1016/j.chemphys.2004.01.011

    Article  CAS  Google Scholar 

  15. Alberti, M., Amat, A., De Angelis, F., and Pirani, F., J. Phys. Chem. B, 2013, vol. 117, no. 23, p. 7065. https://doi.org/10.1021/jp402827y

    Article  CAS  PubMed  Google Scholar 

  16. Erkabaev, A.M., Yaroslavtseva, T.V., Popov, S.E., and Bushkova, O.V., Vibr. Spectrosc., 2014, vol. 75, p. 19. https://doi.org/10.1016/j.vibspec.2014.08.010

    Article  CAS  Google Scholar 

  17. Sogawa, M., Sawayama, S., Han, J., Satou, C., Ohara, K., Matsugami, M., Mimura, H., Morita, M., and Fujii, K., J. Phys. Chem. C, 2019, vol. 123, no. 14, p. 8699. https://doi.org/10.1021/acs.jpcc.9b01038

    Article  CAS  Google Scholar 

  18. Jiang, Z. and Rappe, A.M., J. Phys. Chem. C, 2022, vol. 126, no. 25, p. 10266. https://doi.org/10.1021/acs.jpcc.2c02174

    Article  CAS  Google Scholar 

  19. Kameda, Y., Saito, S., Saji, A., Amo, Y., Usuki, T., Watanabe, H., Arai, N., Umebayashi, Y., Fujii, K., Ueno, K., Ikeda, K., and Otomo, T., J. Phys. Chem. B, 2020, vol. 124, no. 46, p. 10456. https://doi.org/10.1021/acs.jpcb.0c08021

    Article  CAS  PubMed  Google Scholar 

  20. Smirnov, P.R. and Trostin, V.N., Russ. J. Gen. Chem., 2006, vol. 76, no. 2, p. 175. https://doi.org/10.1134/S1070363206020034

    Article  CAS  Google Scholar 

  21. Zhou, Y., Xu, S., Fang, Y., Fang, C., and Zhu, F., J. Clust. Sci., 2016, vol. 27, p. 1131. https://doi.org/10.1007/s10876-015-0948-9

    Article  CAS  Google Scholar 

  22. Teychene, J., Roux-de Balmann, H., Maron, L., and Galier, S., J. Mol. Liq., 2019, vol. 294, p. 111394 https://doi.org/10.1016/j.molliq.2019.111394

    Article  CAS  Google Scholar 

  23. Cabaleiro-Lago, E.M. and Rios, M.A., Chem. Phys., 1998, vol. 236, nos. 1–3, p. 235. https://doi.org/10.1016/S0301-0104(98)00216-X

    Article  CAS  Google Scholar 

  24. Guàrdia, E. and Pinzón, R., J. Mol. Liq., 2000, vol. 85, nos. 1–2, p. 33. https://doi.org/10.1016/S0167-7322(99)00162-2

    Article  Google Scholar 

  25. Nguyen, T.N.V. and Peslherbe, G.H., J. Phys. Chem. A, 2003, vol. 107, no. 10, p. 1540. https://doi.org/10.1021/jp020728x

    Article  CAS  Google Scholar 

  26. Nguyen, T.N., Hughes, S.R., and Peslherbe, G.H., J. Phys. Chem. B, 2008, vol. 112, no. 2, p. 621. https://doi.org/10.1021/jp076567k

    Article  CAS  PubMed  Google Scholar 

  27. Nigam, S. and Majumder, C., J. Mol. Struct.: THEOCHEM, 2009, vol. 907, nos. 1–3, p. 22. https://doi.org/10.1016/j.theochem.2009.04.013

    Article  CAS  Google Scholar 

  28. Torras, J. and Alemán, C., J. Phys. Chem. B, 2013, vol. 117, no. 36, p. 10513. https://doi.org/10.1021/jp402545g

    Article  CAS  PubMed  Google Scholar 

  29. Patil, U.N., Keshri, S., and Tembe, B.L., J. Mol. Liq., 2015, vol. 207, p. 279. https://doi.org/10.1016/j.molliq.2015.03.048

    Article  CAS  Google Scholar 

  30. Patil, U.N. and Tembe, B.L., Mol. Simul., 2016, vol. 42, no. 14, p. 1193. https://doi.org/10.1080/08927022.2016.1159680

    Article  CAS  Google Scholar 

  31. Smirnov, P.R. and Trostin, V.N., Russ. J. Gen. Chem., 2007, vol. 77, no. 5, p. 844. https://doi.org/10.1134/S1070363207050052

    Article  CAS  Google Scholar 

  32. Galib, M., Baer, M.D., Skinner, L.B., Mundy, C.J., Huthwelker, T., Schenter, G.K., Benmore, C.J., Govind, N., and Fulton, J.L., J. Chem. Phys., 2017, vol. 146, p. 084504. https://doi.org/10.1063/1.4975608

    Article  CAS  Google Scholar 

  33. Kelley, M., Donley, A., Clark, S., and Clark, A., J. Phys. Chem. B, 2015, vol. 119, no. 51, p. 15652. https://doi.org/10.1021/acs.jpcb.5b07492

    Article  CAS  PubMed  Google Scholar 

  34. Richardi, J., Fries, P.H., and Krienke, H., J. Chem. Phys., 1998, vol. 108, no. 10, p. 4079 https://doi.org/10.1063/1.475805

    Article  CAS  Google Scholar 

  35. Fischer, R., Richardi, J., Fries, P.H., and Krienke, H., J. Chem. Phys., 2002, vol. 117, no. 18, p. 8467. https://doi.org/10.1063/1.1512281

    Article  CAS  Google Scholar 

  36. Smirnov, P.R. and Trostin, V.N., Russ. J. Gen. Chem., 2007, vol. 77, no. 12, p. 2101. https://doi.org/10.1134/S1070363207120043

    Article  CAS  Google Scholar 

  37. Zhu, F.Y., Fang, C.H., Fang, Y., Zhou, Y.Q., Ge, H.W., and Liu, H.Y., J. Mol. Struct., 2014, vol. 1070, p. 80. https://doi.org/10.1016/j.molstruc.2014.04.002

    Article  CAS  Google Scholar 

  38. Tonti, L. and Floris, F.M., J. Mol. Liq., 2021, vol. 328, p. 115341. https://doi.org/10.1016/j.molliq.2021.115341

    Article  CAS  Google Scholar 

  39. Troxler, L. and Wipff, G., J. Am. Chem. Soc., 1994, vol. 116, no. 4, p. 1468. https://doi.org/10.1021/ja00083a036

    Article  CAS  Google Scholar 

  40. D’Angelo, P. and Pavel, N.V., J. Chem. Phys., 1999, vol. 111, no. 11, p. 5107. https://doi.org/10.1063/1.479767

    Article  Google Scholar 

  41. Miao, J.T., Fang, C.H., Fang, Y., Zhu, F.Y., Liu, H.Y., Zhou, Y.Q., Ge, H.W., Sun, P.C., and Zhao, X.C., J. Mol. Struct., 2016, vol. 1109, p. 67. https://doi.org/10.1016/j.molstruc.2015.12.081

    Article  CAS  Google Scholar 

  42. Caralampio, D.Z., Martínez, J.M., Pappalardo, R.R., and Marcos, E.S., Phys. Chem. Chem. Phys., 2017, vol. 19, no. 42, p. 28993. https://doi.org/10.1039/C7CP05346K

    Article  CAS  PubMed  Google Scholar 

  43. Ding, Y., Chem. Phys. Lett., 2020, vol. 760, p. 137996. https://doi.org/10.1016/j.cplett.2020.137996

    Article  CAS  Google Scholar 

  44. Persson, I., Penner-Hahn, J.E., and Hodgson, K.O., Inorg. Chem., 1993, vol. 32, no. 11, p. 2497. https://doi.org/10.1021/ic00063a049

    Article  CAS  Google Scholar 

  45. Inada, Y., Nakano, Y., Inamo, M., Nomura, M., and Funahashi, S., Inorg. Chem., 2000, vol. 39, no. 21, p. 4793. https://doi.org/10.1021/ic000479w

    Article  CAS  PubMed  Google Scholar 

  46. D’Angelo, P. and Migliorati, V., J. Phys. Chem. B, 2015, vol. 119, no. 10, p. 4061. https://doi.org/10.1021/acs.jpcb.5b01634

    Article  CAS  PubMed  Google Scholar 

  47. Xiang, J.Y. and Ponder, J.W., J. Comput Chem., 2013, vol. 34, no. 9, p. 739. https://doi.org/10.1002/jcc.23190

    Article  CAS  PubMed  Google Scholar 

  48. Persson, I., Lundberg, D., Bajnóczi, É.G., Klementiev, K., Just, J., and Sigfridsson-Clauss, K.G.V., Inorg. Chem., 2020, vol. 59, no. 14, p. 9538. https://doi.org/10.1021/acs.inorgchem.0c00403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Smirnov, P.R. and Trostin, V.N., Russ. J. Gen. Chem., 2009, vol. 79, no. 8, p. 1591. https://doi.org/10.1134/S1070363209080015

    Article  CAS  Google Scholar 

  50. Frank, P., Benfatto, M., Qayyam, M., Hedman, B., and Hodgson, K.O., J. Chem. Phys., 2015, vol. 142, no. 8, p. 084310. https://doi.org/10.1063/1.4908266

    Article  CAS  Google Scholar 

  51. Nilsson, K. and Persson, I., Acta Chem. Scand. A, 1987, vol. 41, p. 139. https://doi.org/10.3891/acta.chem.scand.41a-0139

    Article  Google Scholar 

  52. Yamaguchi, T., Wakita, H., and Nomura, M., J. Chem. Soc. Chem. Commun., 1988, vol. 6, p. 433.

    Article  Google Scholar 

  53. Tsutsui, Y., Sugimoto, K., Wasada, H., Inada, Y., and Funahashi, S., Inorg. Chem., 1997, vol. 101, no. 15, p. 2900. https://doi.org/10.1021/jp963792l

    Article  CAS  Google Scholar 

  54. Díaz-Moreno, S., Muñoz-Páez, A., and Marcos, E.S., J. Phys. Chem. B, 2000, vol. 104, no. 49, p. 11794. https://doi.org/10.1021/jp002528w

    Article  CAS  Google Scholar 

  55. Pliego, J.R.Jr., J. Mol. Liq., 2022, vol. 359, p. 119368. https://doi.org/10.1016/j.molliq.2022.119368

    Article  CAS  Google Scholar 

  56. Yamaguchi, T., Johansson, G., Holmberg, B., Maeda, M., and Ohtaki, H., Acta Chem. Scand. A, 1984, vol. 38, no. 6, p. 437.

    Article  Google Scholar 

  57. Sandstrom, M., Neilson, G.W., Johansson, G., and Yamaguchi, T., J. Phys. C, 1985, vol. 18, no. 36, p. L1115. https://doi.org/10.1088/0022-3719/18/36/001

  58. Skipper, N.T. and Neilson, G.W., J. Phys. Condens. Matter., 1989, vol. 1, no. 26, p. 4141. https://doi.org/10.1088/0953-8984/1/26/010

    Article  CAS  Google Scholar 

  59. Yamaguchi, T., Lindquist, O., Boyce, J.B., and Claeson, T., Acta Chem. Scand. A, 1984, vol. 38, no. 6, p. 423.

    Article  Google Scholar 

  60. Seward, T.W., Henderson, C.M.B., Charnock, J.M., and Dobson, B.R., Geochem. Cosmohim. Acta, 1996, vol. 60, no. 13, p. 2273. https://doi.org/10.1016/0016-7037(96)00098-1

    Article  CAS  Google Scholar 

  61. Fulton, J.L., Kathmann, S.M., Schenter, G.K., and Balasubramanian, M., J. Phys. Chem. A, 2009, vol. 113, no. 50, p. 13976. https://doi.org/10.1021/jp9064906

    Article  CAS  PubMed  Google Scholar 

  62. Blauth, C.M., Pribil, A.B., Randolf, B.R., Rode, B.M., and Hofer, T.S., Chem. Phys. Lett., 2010, vol. 500, nos. 4–6, p. 251. https://doi.org/10.1016/j.cplett.2010.10.008

    Article  CAS  Google Scholar 

  63. Busato, M., Melchior, A., Migliorati, V., Colella, A., Persson, I., Mancini, G., Veclani, D., and D’Angelo, P., Inorg. Chem., 2020, vol. 59, no. 23, p. 17291. https://doi.org/10.1021/acs.inorgchem.0c02494

    Article  CAS  PubMed  Google Scholar 

  64. Prasetyo, N., J. Mol. Liq., 2022, vol. 361, p. 119688. https://doi.org/10.1016/j.molliq.2022.119688

    Article  CAS  Google Scholar 

  65. Cha, J.-N., Cheong, B.-S., and Cho, H.-G., J. Phys. Chem. A, 2001, vol. 105, no. 10, p. 1789. https://doi.org/10.1021/jp003751w

    Article  CAS  Google Scholar 

  66. Kalugin, O.N., Agieienko, V.N., and Otroshko, N.A., J. Mol. Liq., 2012, vol. 165, p. 78. https://doi.org/10.1016/j.molliq.2011.10.012

    Article  CAS  Google Scholar 

  67. Smirnov, P.R. and Trostin, V.N., Russ. J. Gen. Chem., 2008, vol. 78, no. 9, p. 1643. https://doi.org/10.1134/S1070363208090016

    Article  CAS  Google Scholar 

  68. Smirnov, P.R. and Trostin, V.N., Russ. J. Gen. Chem., 2009, vol. 79, no. 8, p. 1600. https://doi.org/10.1134/S1070363209080027

    Article  CAS  Google Scholar 

  69. Rudolph, W.W. and Irmer, G., Dalton Trans., 2013, vol. 42, no. 11, p. 3919. https://doi.org/10.1039/c2dt31718d

    Article  CAS  PubMed  Google Scholar 

  70. Chizhik, V.I., Egorov, A.V., Pavlova, M.S., Egorova, M.I., and Donets, A.V., J. Mol. Liq., 2016, vol. 224, p. 730. https://doi.org/10.1016/j.molliq.2016.10.035

    Article  CAS  Google Scholar 

  71. D’Angelo, P., Migliorati, V., Sessa, F., Mancini, G., and Persson, I., J. Phys. Chem. B, 2016, vol. 120, no. 17, p. 4114. https://doi.org/10.1021/acs.jpcb.6b01054

    Article  CAS  PubMed  Google Scholar 

  72. Chaudhari, M. and Rempe, S.B., J. Chem. Phys., 2018, vol. 148, no. 22, p. 222831. https://doi.org/10.1063/1.5023130

    Article  CAS  PubMed  Google Scholar 

  73. Ohtaki, H., Monatsh. Chem., 2001, vol. 132, no. 11, p. 1237.

    Article  CAS  Google Scholar 

  74. Inada, Y., Niwa, Y., Iwata, K., Funahashi, S., Ohtaki, H., and Nomura, M., J. Mol. Liq., 2006, vol. 129, nos. 1–2, p. 18. https://doi.org/10.1016/j.molliq.2006.08.009

    Article  CAS  Google Scholar 

  75. Migliorati, V., Filipponi, A., Sessa, F., Lapi, A., Serva, A., and D’Angelo, P., Phys. Chem. Chem. Phys., 2019, vol. 21, p. 13058. https://doi.org/10.1039/C9CP01417A

    Article  CAS  PubMed  Google Scholar 

  76. Lutz, O.M.D., Hofer, T.S., Randolf, B.R., and Rode, B.M., Chem. Phys. Lett., 2012, vol. 536, p. 50. https://doi.org/10.1016/j.cplett.2012.03.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Migliorati, V., Serva, A., Sessa, F., Lapi, A., and D’Angelo, P., J. Phys. Chem. B, 2018, vol. 122, no. 10, p. 2779. https://doi.org/10.1021/acs.jpcb.7b12571

    Article  CAS  PubMed  Google Scholar 

  78. Friesen, S., Krickl, S., Luger, M., Nazet, A., Hefter, G., and Buchner, R., Phys. Chem. Chem. Phys., 2018, vol. 20, p. 8812. https://doi.org/10.1039/C8CP00248G

    Article  CAS  PubMed  Google Scholar 

  79. Inada, Y., Sugata, T., Ozutsumi, K., and Funahashi, S., Inorg. Chem., 1998, vol. 37, no. 8, p. 1886. https://doi.org/10.1021/ic970830m

    Article  CAS  Google Scholar 

  80. Konieczna, H., Lundberg, D., and Persson, I., Polyhedron, 2021, vol. 195, p. 114961. https://doi.org/10.1016/j.poly.2020.114961

    Article  CAS  Google Scholar 

  81. Rudolph, W.W. and Irmer, G., Dalton Trans., 2013, vol. 42, no. 40, p. 14460. https://doi.org/10.1039/c3dt51493e

    Article  CAS  PubMed  Google Scholar 

  82. Olszewski, W., Szymański, K., Zaleski, P., and Zając, D.A., J. Phys. Chem. A, 2011, vol. 115, no. 46, p. 13420. https://doi.org/10.1021/jp207587u

    Article  CAS  PubMed  Google Scholar 

  83. Semrouni, D., Isley, W.C., Clavaguéra, C., Dognon, J.-P., Cramer, C.J., and Gagliardi, L., J. Chem. Theory Comput., 2013, vol. 9, no. 7, p. 3062. https://doi.org/10.1021/ct400237r

    Article  CAS  PubMed  Google Scholar 

  84. Ahmmad, B., Nishi, M., Hirose, F., Ohkubo, T., and Kuroda, Y., Phys. Chem. Chem. Phys., 2013, vol. 15, no. 21, p. 8264. https://doi.org/10.1039/c3cp50181g

    Article  CAS  PubMed  Google Scholar 

  85. Caralampio, D.Z., Reeves, B., Beccia, M.R., Martínez, J.M., Pappalardo, R.R., Auwer, C., and Marcos, E.S., Mol. Phys., 2019, vol. 117, no. 22, p. 3320. https://doi.org/10.1080/00268976.2019.1650209

    Article  CAS  Google Scholar 

  86. Inada, Y. and Funahashi, S., Analyt. Sciences, 1997, vol. 13, no. 3, p. 373. https://doi.org/10.2116/analsci.13.373

    Article  CAS  Google Scholar 

  87. Kristiansson, O., Persson, I., Bobicz, D., and Xu, D., Inorg. Chim. Acta, 2003, vol. 344, p. 15. https://doi.org/10.1016/S0020-1693(02)01322-1

    Article  CAS  Google Scholar 

  88. D’Angelo, P., Barone, V., Chillemi, G., Sanna, N., Meyer-Klaucke, W., and Pavel, N.V., J. Am. Chem. Soc., 2002, vol. 124, no. 9, p. 1958. https://doi.org/10.1021/ja015685x

    Article  CAS  PubMed  Google Scholar 

  89. Liu, H.Y., Fang, C.H., Fang, Y., Zhou, Y.Q., Ge, H.W., Zhu, F.Y., Sun, P.C., and Miao, J.T., J. Mol. Model., 2016, vol. 22, no. 1. Art. 2. https://doi.org/10.1007/s00894-015-2871-2

  90. Hellquist, B., Bengtsson, L.A., Holmberg, B., Hedman, B., Persson, I., and Elding, L.I., Acta Chem. Scand., 1991, vol. 45, no. 5, p. 449. https://doi.org/10.3891/acta.chem.scand.45-0449

    Article  CAS  Google Scholar 

  91. Waluyo, I., Huang, C., Nordlund, D., Bergmann, U., Weiss, T.M., Pettersson, L.G.M., and Nilsson, A., J. Chem. Phys., 2011, vol. 134, no. 6, p. 064513. https://doi.org/10.1063/1.3533958

    Article  CAS  Google Scholar 

  92. Dalibart, M., Derouault, J., Granger, P., Inorg. Chem., 1981, vol. 20, no. 11, p. 3975. https://doi.org/10.1021/ic50225a075

    Article  CAS  Google Scholar 

  93. Dalibart, M., Derouault, J., Granger, P., and Chapelle, S., Inorg. Chem., 1982, vol. 21, no. 3, p. 1040. https://doi.org/10.1021/ic00133a034

    Article  CAS  Google Scholar 

Download references

Funding

The study was carried out with the financial support of the Russian foundation for basic research and Ivanovo oblast as part of scientific project no. 20-43-370001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Smirnov.

Ethics declarations

The author declares that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, P.R. Comparative Characteristics of the Nearest Environment Structures of Metal Ions in Water and Acetonitrile (A Review). Russ J Gen Chem 93, 575–585 (2023). https://doi.org/10.1134/S1070363223030143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223030143

Keywords:

Navigation