Skip to main content
Log in

A Novel Quantitative Insight into the Chemical Reactivity of Caffeine in Acidic, Neutral and Basic Medium in an Electrophilic Substitution Reaction

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The chemical reactivity of caffeine in aqueous medium at different pH in the bromination reaction was quantitatively assessed from experimental investigations of kinetic evidences, reduction propensity estimations employing hydrodynamic voltammetry and in silico evaluations of dipole moments. The reaction at each of these pH was studied at five different temperatures whereby specific rates, energies of activation and entropy activation values were determined. Further, the variation in the nucleophilicity of caffeine at these pH values was estimated in terms of its reduction propensity from voltammograms. The outcome of these data complemented by in silico evaluations of dipole moments, quantitatively assessed in unison the chemical reactivity of caffeine at acidic, neutral and basic medium. The increase in the specific rates of bromination of caffeine was seen to proportionately accompany the increase in the nucleophilicity of caffeine and decrease in dipole moments. The aqueous uncatalysed bromination of caffeine was found to be a rapid second order electrophilic substitution reaction and studies herein provided an insight into the mechanism of the reaction at different pH. The study necessitated significantly low concentrations of the reactants in the benign solvent water for kinetic measurements that consequently bolstered green chemistry principles in this research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Scheme
Scheme
Scheme
Scheme
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Janitschke, D., Lauer, A.A., and Bachmann, C.M., Int. J. Mol. Sci., 2020, vol. 21, no. 23, p. 9015. https://doi.org/10.3390/ijms21239015

  2. Tavagnacco, L., Corucci, G., and Gerelli, Y., J. Phys. Chem., 2021, vol. 125, no. 36, p. 10174. https://doi.org/10.1021/acs.jpcb.1c04360

    Article  CAS  Google Scholar 

  3. Terekhova, I.V., Kumeev, R.S., and Al’per, G.A., Russ. J. Phys., 2007, vol. 81, p. 1071. https://doi.org/10.1134/S0036024407070114

  4. Skornyakov, Yu.V., Lozinskaya, N.A., Proskurnina, M.V., and Zefirov, N.S., Russ. J. Org. Chem., 2005, vol. 41, no. 5, p. 689. https://doi.org/10.1007/s11178-005-0227-6

  5. Avdeenko, A.P., Konovalova, S.A., and Shishkina, S.V., Russ. J. Org. Chem., 2021, vol. 57, p. 38. https://doi.org/10.1134/S1070428021010061

  6. Borodkin, G.I.. and Shubin, V.G., Russ. J. Org. Chem., 2021, vol. 57, p. 1369. https://doi.org/10.1134/S1070428021090013

  7. Yambulatov, D.S., Nikolaevskii, S.A., Lutsenko, I.A., Kiskin, M.A., Shmelev, M.A., Bekker, O.B., Efimov, N.N., Ugolkova, E.A., Minin, V.V., Sidorov, A.A., and Eremenko, I.L., Russ. J. Coord. Chem., 2020, vol. 46, p. 772. https://doi.org/10.1134/S1070328420110093

  8. Berliner, E., J. Chem. Edu., 1966, vol. 43, no. 3, p. 124. https://doi.org/10.1021/ed043p124

  9. Rao, T.S., Mali, S.I., and Dangat, V.T., Tetrahedron, 1978, vol. 34, p. 205. https://doi.org/10.1016/S0040-4020(01)93605-1

    Article  CAS  Google Scholar 

  10. Bonde, S.L., Dangat, V.T., Bhadane, R.P., and Joshi, V.S., Int. J. Chem. Kinet., 2013, vol. 45, no. 6, p. 355. https://doi.org/10.1002/kin.20770

  11. Srinivasan, C. and Chellamani, A., React. Kinet. Catal. Lett., 1982, vol. 18, p. 187. https://doi.org/10.1007/BF02065161

  12. Borkar, V.T., Bonde, S.L., and Dangat, V.T., Int. J. Chem. Kinet., 2013, vol. 45, p. 693. https://doi.org/10.1002/kin.20801

  13. Borkar, V.T., Int. J. Chem. Kinet., 2021, vol. 53, no. 4, p. 504. https://doi.org/10.1002/kin.21460

  14. Borkar, V.T., Int. J. Chem. Kinet., 2021, vol. 53, no. 11, p. 1193. https://doi.org/10.1002/kin.21525

    Article  CAS  Google Scholar 

  15. Saikia, I., Borah, A.J., and Phukan, P., Chem. Rev., 2016, vol. 116, no. 12, p. 6837. https://doi.org/10.1021/acs.chemrev.5b00400

    Article  CAS  PubMed  Google Scholar 

  16. King, A.O., Okukado, N., and Negishi, E., J. Chem. Soc., 1977, vol. 19, p. 683.

    Google Scholar 

  17. Sonogashira, K., J. Organomet. Chem., 2002, vol. 653, nos. 1–2, p. 46. https://doi.org/10.1016/S0022-328X

  18. Tamao, K., Sumitani, K., and Kumada, M., J. Am. Chem. Soc., 1972, vol. 94, no. 12, p. 4374. https://doi.org/10.1021/ja00767a075

    Article  CAS  Google Scholar 

  19. Suzuki, A., Pure Appl. Chem., 1991, vol. 63, no. 3, p. 419. https://doi.org/10.1351/pac199163030419

  20. Urgaonkar, S. and Verkade, J.G., J. Org. Chem., 2004, vol. 69, no. 26, p. 9135. https://doi.org/10.1021/jo048716q

    Article  CAS  PubMed  Google Scholar 

  21. Lieberman, A.N. and Goldstein, M., Pharmacol. Rev., 1985, vol. 37, no. 2, p. 217.

  22. Smirnova, I.S., Suslov, A.V., and Noskin, L.A., Radiobiol., 1983, vol. 23, no. 5, p. 653.

  23. Vartanian, L.P., Rudenko, and Volchkov, V.A., Med. Radiol., 1989, vol. 34, no. 11, p. 82.

    CAS  Google Scholar 

  24. Bakkenist, A.R., de Boer, J.E., Plat, H., and Wever, R., Biochem. Biophys. Acta., 1980, vol. 613, no. 2, p. 337. https://doi.org/10.1016/0005-2744

  25. Beckwith, R.C., Wang, T.X., and Margerum, D.W., Inorg. Chem., 1996, vol. 35, no. 4, p. 995. https://doi.org/10.1021/ic950909w

  26. Kauffman, G.B., J. Chem. Edu., 1988, vol. 65, no. 1, p. 28. https://doi.org/10.1021/ed065p28

  27. Borkar, V.T., J. Chem. Edu., 2021, vol. 98, no. 9, p. 2959. https://doi.org/10.1021/acs.jchemed.1c00185

Download references

ACKNOWLEDGMENTS

The authors acknowledge the Management of Modern Education Society’s Nowrosjee Wadia College, Pune for facilitating this work in the laboratories of the Department of Chemistry. The authors are thankful to Dr. T.S. Rao (Department of Chemistry, University of Pune) and Dr. V.T. Dangat (Department of Chemistry, Nowrosjee Wadia College, Pune) for their helpful discussions during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. T. Borkar.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maske, P.D., Borkar, V.T. & Latpate, S.S. A Novel Quantitative Insight into the Chemical Reactivity of Caffeine in Acidic, Neutral and Basic Medium in an Electrophilic Substitution Reaction. Russ J Gen Chem 93, 429–439 (2023). https://doi.org/10.1134/S1070363223020263

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223020263

Keywords:

Navigation