Skip to main content
Log in

Construction of an Unprecedented Homodinuclear Copper(II) Salamo-Based Complex

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A homo-dinuclear Cu(II) complex [Cu2(L)2] with the stoichiometric ratio of Cu(II) : (L)2– = 2 : 2 was synthesized by the reaction of the ligand (4-methyl-6-aldehyde-6′-methoxy-2,2′-[ethylenediyldioxybis(nitrilomethylidyne)]diphenol) with Cu(OAc)2·H2O in the mixed CH2Cl2–MeOMe–EtOH solution (an unexpected ligand is the intermediate of condensation reaction of starting ligand with acetone). The Cu(II) complex was characterized by elemental analysis, IR, UV-Vis and X-ray crystallography. The Cu(II) complex crystallizes in monoclinic space group P21/n and consists of two Cu(II) atoms and two completely deprotonated ligand (L)2– units. Through the analysis of intermolecular interactions, the Cu(II) complex units can form a 2D supramolecular structure through intermolecular hydrogen bonds and C–H···π interactions, respectively, meanwhile, the molecular interactions were quantitatively studied by Hirshfeld surfaces analyses. The fluorescence properties and DFT calculations were performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Liu, X., Manzur, C., Novoa, N., Celedón, S., Carrillo, D., and Hamon, J.R., Coord. Chem. Rev., 2018, vol. 357, p. 144. https://doi.org/10.1016/j.ccr.2017.11.030

  2. Franks, M., Gadzhieva, A., Ghandhi, L., Murrell, D., Blake, A.J., Davies, E.S., Lewis, W., Moro, F., McMaster, J., and Schröder, M., Inorg. Chem., 2013, vol. 52, p. 660. https://doi.org/10.1021/ic301731w

  3. Feng, L.C., Dou, L., Li, X.X., and Dong, W.K., Polyhedron, 2022, vol. 224, p. 116024. https://doi.org/10.1016/j.poly.2022.116024

  4. Feng, S.S., Li, L.L., and Li, P., Appl. Organomet. Chem., 2022, vol. 36, p. e6501. https://doi.org/10.1002/aoc.6501

  5. Man, L.L., Dou, L., Li, W.D., and La, Y.T., J. Photochem. Photobio., 2022, vol. A 431, p. 114068. https://doi.org/10.1016/j.jphotochem.2022.114068

  6. Chai, L.Q., Chai, Y.M., Zhang, X.F., Appl. Organomet. Chem., 2022, vol. 36, p. e6828. https://doi.org/10.1002/aoc.6828

  7. Boyle, T.J., Sears, J.M., Greathouse, J.A., Perales, D., Cramer, R., Staples, O., Rheingold, A.L., Coker, E.N., Rope, T.M., and Kemp, R.A., Inorg. Chem., 2018, vol. 57, p. 2402. https://doi.org/10.1021/acs.inorgchem.7b01350

    Article  CAS  PubMed  Google Scholar 

  8. Strianese, M., Strianese, M., Guarnieri, D., Lamberti, M., Landi, A., Peluso, A., and Pellecchia, C., Inorg. Chem., 2020, vol. 59, p. 15977. https://doi.org/10.1021/acs.inorgchem.0c02499

  9. Kundu, B.K., Mandal, P., Mukhopadhyay, B.G., Tiwaric, R., Nayakc, D., Gangulyd, R., and Mukhopadhyay, S., Sens. Actuators B: Chem., 2019, vol. 282, p. 347. https://doi.org/10.1016/j.snb.2018.11.076

    Article  CAS  Google Scholar 

  10. Rigamonti, L., Zardi, P., Carlino, S., Demartin, F., Castellano, C., Pigani, L., Ponti, A., Ferretti, A.M., and Pasini, A., Int. J. Mol. Sci., 2020, vol. 21, p. 7882. https://doi.org/10.3390/ijms21217882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bendre, R.S., Tadavi, S.K., and Patil, M.M., Transit. Met. Chem., 2018, vol. 43, p. 83. https://doi.org/10.1007/s11243-017-0196-y

  12. Akine, S., Taniguchi, T., and Nabeshima, T., Chem. Lett., 2001, vol. 30, p. 682. https://doi.org/10.1246/cl.2001.682

  13. Liu, G.H., Li, M., Li, L.L., and Bian, R.N., Phosphorus Sulfur Silicon Relat. Elem., 2022, vol. 197, p. 124. https://doi.org/10.1080/10426507.2021.2012674

    Article  CAS  Google Scholar 

  14. Feng, S.S., Wei, Y.X., Li, M., and Dong, W.K., J. Mol. Struct., 2022, vol. 1261, p. 132923. https://doi.org/10.1016/j.molstruc.2022.132923

    Article  CAS  Google Scholar 

  15. Akine, S., and Nabeshima, T., Dalton Trans., 2009, vol. 47, p. 10395. https://doi.org/10.1039/B910989G

    Article  Google Scholar 

  16. Zhang, J.Q., Yao, G.X., La, Y.T., and Dong, W.K., Inorg. Chim. Acta, 2022, vol. 533, p. 120775. https://doi.org/10.1016/j.ica.2021.120775

    Article  CAS  Google Scholar 

  17. Akine, S., Taniguchi, T., and Nabeshima, T., J. Am. Chem. Soc., 2006, vol. 128, p. 15765. https://doi.org/10.1021/ja0646702

  18. Huang, Y., Li, W.D., Wei, Y.X., and Wang, L., J. Mol. Struct., 2022, vol. 1272, p. 134194. https://doi.org/10.1016/j.molstruc.2022.134194

    Article  CAS  Google Scholar 

  19. Li, S.Z., Wei, Y.X., Huang, Y., and Dong, W.K., J. Mol. Struct., 2022, vol. 1265, p. 133473. https://doi.org/10.1016/j.molstruc.2022.133473

    Article  CAS  Google Scholar 

  20. Zhang, J., Feng, L.C., Li, S.Z., and Dong, W.K., Polyhedron, 2022, vol. 226, p. 116113. https://doi.org/10.1016/j.poly.2022.116113

    Article  CAS  Google Scholar 

  21. Zhang, T., Li, W.D., Li, X., and Peng, Y.D., J. Mol. Struct., 2022, vol. 1260, p. 132854. https://doi.org/10.1016/j.molstruc.2022.132854

    Article  CAS  Google Scholar 

  22. Yue, Y.N., La, Y.T., Han, X.J., and Dong, W.K., J. Coord. Chem., 2022, vol. 75, p. 413. https://doi.org/10.1080/00958972.2022.2050713

    Article  CAS  Google Scholar 

  23. Yue, Y.N., La, Y.T., Zhang, J., and Dong, W.K., J. Mol. Struct., 2022, vol. 1264, p. 133272. https://doi.org/10.1016/j.molstruc.2022.133272

    Article  CAS  Google Scholar 

  24. Dou, L., Hu, Z.F., and Feng, L.C., J. Coord. Chem., 2022, vol. 75, p. 2228. https://doi.org/10.1080/00958972.2022.2124509

  25. Li, M., Li, L.L., Li, P., and Dong, W.K., J. Struct. Chem., 2022, vol. 63, p. 280. https://doi.org/10.26902/JSC_id88419

    Article  CAS  Google Scholar 

  26. Dou, L., Cai, J.Q., Feng, L.C., and Duan, J.G., J. Coord. Chem., 2022, vol. 75, p. 1679. https://doi.org/10.1080/00958972.2022.2118053

    Article  CAS  Google Scholar 

  27. Hu, Z.F., Dou, L., Zhang, J., Zhang, Y., and Sun, Y.X., Inorg. Chim. Acta, 2022, vol. 541, p. 121090. https://doi.org/10.1016/j.ica.2022.121090

    Article  CAS  Google Scholar 

  28. Li, R.Y., Dou, L., Tong, L., and Dong, W.K., Appl. Organomet. Chem., 2022, vol. 36, p. e6671. https://doi.org/10.1002/aoc.6671

  29. Li, L.L., Feng, S.S., Zhang, T., and Wang, L., Inorg. Chim. Acta, 2022, vol. 534, p. 120815. https://doi.org/10.1016/j.ica.2022.120815

    Article  CAS  Google Scholar 

  30. Na, L.P., Dou, L., Yan, Y.J., and Li, R.Y., J. Photochem. Photobiol. A: Chem., 2022, vol. 432, p. 114061. https://doi.org/10.1016/j.jphotochem.2022.114061

    Article  CAS  Google Scholar 

  31. Dong, W.K., Zhang, J.Q., and Du, M.X., Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2022, vol. 278, p. 121340. https://doi.org/10.1016/j.saa.2022.121340

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, T., Li, P., and Li, L.L., Transit. Met. Chem., 2022, vol. 47, p. 53. https://doi.org/10.1007/s11243-021-00489-x

    Article  CAS  Google Scholar 

  33. Li, M., Li, S.Z., Huang, Y., and Dong, W.K., J. Photochem. Photobiol., 2022, vol. 431, p. 114053. https://doi.org/10.1016/j.jphotochem.2022.114053

    Article  CAS  Google Scholar 

  34. Na, L.P., Li, M., and La, Y.T., Inorg. Chim. Acta, 2022, vol. 537, p. 120932. https://doi.org/10.1016/j.ica.2022.120932

    Article  CAS  Google Scholar 

  35. Li, M., Feng, L.C., Feng, S.S., and Dong, W.K., J. Mol. Struct., 2022, vol. 1261, p. 132926. https://doi.org/10.1016/j.molstruc.2022.132926

    Article  CAS  Google Scholar 

  36. Li, S.Z., Tong, L., Li, X., and Dong, W.K., Inorg. Chim. Acta, 2022, vol. 540, p. 121047. https://doi.org/10.1016/j.ica.2022.121047

    Article  CAS  Google Scholar 

  37. Man, L.L., Tong, L., Gan, L.L., and Li, R.Y., Phosphorus Sulfur Silicon Relat. Elem., 2022, vol. 197, p. 1263. https://doi.org/10.1080/10426507.2022.2088758

    Article  CAS  Google Scholar 

  38. Li, S.Z., Dou, L., Huang, Y., and Li, P., Polyhedron, 2022, vol. 212, p. 115615. https://doi.org/10.1016/j.poly.2021.115615

    Article  CAS  Google Scholar 

  39. Han, X.J., Yan, Y.J., Dou, L., Peng, Y. D., and Huang, F., J. Mol. Struct., 2022, vol. 1265, p. 133475. https://doi.org/10.1016/j.molstruc.2022.133475

    Article  CAS  Google Scholar 

  40. Dou, L., Tong, L., Yan, Y.B., and Deng, Y.H., J. Struct. Chem., 2022, vol. 63 p. 1242. https://doi.org/10.1134/s0022476622080054

    Article  CAS  Google Scholar 

  41. Li, X., Feng, S.S., Wei, Y.X., and Dong, W.K., J. Coord. Chem., 2022, vol. 75, p. 2245. https://doi.org/10.1080/00958972.2022.2123738

  42. Zhang, J.Q., Yao, G.X., Yan, Y.J., Xu, L., and Zhang, Y., J. Mol. Struct., 2022, vol. 1260, p. 132772. https://doi.org/10.1016/j.molstruc.2022.132772

    Article  CAS  Google Scholar 

  43. Han, X.J., Li, R.Y., Yue, Y.N., and Zhang, Y., Inorg. Chim. Acta, 2022, vol. 529, p. 120634. https://doi.org/10.1016/j.ica.2021.120634

    Article  CAS  Google Scholar 

  44. Manna, P., Seth, S.K., Das, A., Hemming, J., Prendergast, R., Helliwell, M., Choudhury, S.R., Frontera, A., and Mukhopadhyay, S., Inorg. Chem., 2012, vol. 51, p. 3557. https://doi.org/10.1021/ic202317f

    Article  CAS  PubMed  Google Scholar 

  45. Ma, L.J., Li, X., Yan, Y.J., and Yue, Y.N., J. Mol. Struct., 2023, vol. 1275, p. 134617. https://doi.org/10.1016/j.molstruc.2022.134617

    Article  CAS  Google Scholar 

  46. Pandey, D., Narvi, S.S., Kumar, R., and Marek, J., Russ. J. Inorg. Chem., 2022, vol. 67, p. 1557. https://doi.org/10.1134/S0036023622100357

  47. Huang, Y., Li, X., and Li, W.D., Inorg. Chim. Acta, 2023, vol. 546, p. 121303. https://doi.org/10.1021/cg8005212

    Article  CAS  Google Scholar 

  48. Pinto, C.B. and Rodrigues, B.L., J. Struct. Chem., 2020, vol. 61, p. 274. https://doi.org/10.1016/j.ica.2022.121303

    Article  CAS  Google Scholar 

  49. Li, C.G., An, H.L., Chai, L.Q., Appl. Organomet. Chem., 2022, vol. 36, p. e6918. https://doi.org/10.1002/aoc.6918

  50. Song, F., Watanabe, S., Floreancig, P.E., and Koide, K., J. Am. Chem. Soc., 2008, vol. 130, p. 16460. https://doi.org/10.1021/ja805678r

    Article  CAS  PubMed  Google Scholar 

  51. Li, X., Hu, Z.F., Gan, L.L., and Deng, Y.H., J. Mol. Struct., 2023, vol. 1278, p. 134968. https://doi.org/10.1016/j.molstruc.2023.134968

    Article  CAS  Google Scholar 

  52. La, Y.T., Yan, Y.J., Gan, L.L., and Xu, L., Inorg. Chim. Acta, 2023, vol. 546, p. 121336. https://doi.org/10.1016/j.ica.2022.121336

    Article  CAS  Google Scholar 

  53. Sheldrick, G.M., Acta Crystallor. A, 2015, vol. 71, p. 3. https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  54. Sheldrick, G.M., Acta Crystallor. C, 2015, vol. 71, p. 3. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  55. Krause, L., Irmer, R.H., Sheldrick, G.M., and Stalke, D., J. Appl. Crystallogr., 2015, vol. 48, p. 3. https://doi.org/10.1107/S1600576714022985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Program of Gansu Province (project no. 21YF5GA057) and the National Natural Science Foundation of China (project no. 21761018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Wang or W.-K. Dong.

Ethics declarations

No conflict of interest was declared by the authors.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, YF., Wei, YX., Li, WD. et al. Construction of an Unprecedented Homodinuclear Copper(II) Salamo-Based Complex. Russ J Gen Chem 93, 418–428 (2023). https://doi.org/10.1134/S1070363223020251

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223020251

Keywords:

Navigation