Skip to main content
Log in

Fluorescence Properties of EDTA Carbon-Dots and Its Application in Iron Ions Detection

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Ethylenediaminetetraacetic acid carbon dots (EDTA-CDs) with a strong fluorescence, were synthesized via a hydrothermal treatment. The temperature and time of hydrothermal process were found to be the critical factors on the fluorescence properties of EDTA-CDs. The results demonstrated that concomitant with increasing heating temperature (from 25 to 230°C) and prolonging heating time (from 0 to 20 h), the fluorescence intensity of EDTA-CDs significantly enhanced and the maximum wavelength moved towards the long wavelength region (from 400 nm to 450 nm). Importantly, EDTA-CDs exhibited excellent specificity, selectivity and biocompatibility, which could be successfully applied in determination of iron ions and bioimaging fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Baker, S.N. and Baker, G.A., Angew. Chem. Int. Ed., 2010, vol. 49, p. 6726. https://doi.org/10.1002/anie.200906623

    Article  CAS  Google Scholar 

  2. Miao, X., Qu, D., Yang, D.X., Nie, B., Zhao, Y.K., Fan, H.Y., and Sun, Z.C., Adv. Mater., 2018, vol. 30, p. 1704740. https://doi.org/10.1002/adma.201870002

    Article  CAS  Google Scholar 

  3. Ankireddy, S.R. and Kim, J., Sensor. Actuat. (B), 2018, vol. 255, p. 3425. https://doi.org/10.1016/j.snb.2017.09.172

    Article  CAS  Google Scholar 

  4. Zhang, H.J., Chen, Y.L., Liang, M.J., Xu, L., Qi, F., Chen, H.L., and Chen, X.G., Anal. Chem., 2014, vol. 86, p. 9846. https://doi.org/10.1021/acs.analchem.7b04211

    Article  CAS  PubMed  Google Scholar 

  5. Shangguan, J.F., Huang, J., He, D.G., He, X.X., Wang, K.M., Ye, R.Z., Yang, X., Qing, T.P., and Tang, J.L., Anal. Chem., 2017, vol. 89, p. 7477. https://doi.org/10.1021/acs.analchem.7b01053

    Article  CAS  PubMed  Google Scholar 

  6. Xu, Q., Pu, P., Zhao, J.G., Dong, C.B., Gao, C., Chen, Y.S., Chen, J.R., Liu, Y., and Zhou, H.J., J. Mater. Chem. A., 2015, vol. 3, p. 542. https://doi.org/10.1039/C4TA05483K

    Article  CAS  Google Scholar 

  7. Chen, Y.H., Zheng, M.T., Xiao, Y., Dong, H.W., Zhang, H.R., Zhuang, J.L., Hu, H., Lei, B.F., and Liu, Y.L., Adv. Mater., 2016, vol. 28, p. 312. https://doi.org/10.1002/adma.201503380

    Article  CAS  PubMed  Google Scholar 

  8. Krysmann, M.J., Kelarakis, A., Dallas, P., and Giannelis, E.P., J. Am. Chem. Soc., 2011, vol. 134, p. 747. https://doi.org/10.1021/ja204661r

    Article  CAS  PubMed  Google Scholar 

  9. Peng, H. and Travas-Sejdic J., Chem. Mater., 2009, vol. 21, p. 5563. https://doi.org/10.1021/cm901593y

  10. Liu, C.J., Zhang, P., Zhai, X.Y., Tian, F., Li, W., Yang, J., Liu, Y., Wang, H., Wang, W., and Liu, W., Biomaterials, 2012, vol. 33, p. 3604. https://doi.org/10.1016/j.biomaterials.2012.01.052

    Article  CAS  PubMed  Google Scholar 

  11. Shi, Q.Q., Li, Y.H, Xu, Y., Wang, Y., Yin, X.B., He, X.W., and Zhang, Y.K., RSC Adv., 2014, vol. 4, p. 1563. https://doi.org/10.1039/C3RA45762A

    Article  CAS  Google Scholar 

  12. Jia, D.D., Cao, L., Wang, D.N., Guo, X.M, Liang, H., Zhao, F.F., Gu, Y.H., and Wang, D.J., Chem. Commun., 2014, vol. 50, p. 11488. https://doi.org/10.1039/C4CC05342G

    Article  CAS  Google Scholar 

  13. Zong, J., Yang, X.L., Trinchi, A., Hardin, S., Cole, I., Zhu, Y.H., Li, C.Z., Muster, T., and Wei, G., Biosens. Bioelectron., 2014, vol. 51, p. 330. https://doi.org/10.1016/j.bios.2013.07.042

    Article  CAS  PubMed  Google Scholar 

  14. Zheng, X.T., Than, A., Ananthanaraya, A., Kim, D.H., and Chen, P., ACS Nano, 2013, vol. 7, p. 6278. https://doi.org/10.1021/nn4023137

    Article  CAS  PubMed  Google Scholar 

  15. Zhu, S.J., Meng, Q.G., Wang, L., Zhang, J.H., Song, Y.B., Jin, H., Zhang, K., Sun, H., Wang, H., and Yang, B., Angew. Chem. Int. Edit., 2013, vol. 125, p. 4045. https://doi.org/10.1002/ange.201300519

    Article  Google Scholar 

  16. Zhou, J., Yang, Y., and Zhang, C.Y., Chem. Commun., 2013, vol. 49, p. 8605. https://doi.org/10.1039/C3CC42266F

  17. Liu, C.J., Zhang, P., Zhai, X.Y., Tian, F., Li, W.C., Yang, J.H., Liu, Y., Wang, H.B., Wang W., and Liu, W.G., Biomaterials, 2012, vol. 33, p. 3604. https://doi.org/10.1016/j.biomaterials.2012.01.052

  18. Costas-Mora, I., Romero, V., Lavilla, I., and Bendicho, C., Anal. Chem., 2014, vol. 86, p. 4536. https://doi.org/10.1021/ac500517h

    Article  CAS  PubMed  Google Scholar 

  19. Li, Y., Zhao, Y., Cheng, H.H., Hu, Y., Shi, G.Q., Dai, L.M., and Qu, L.J., J. Am. Chem. Soc., 2012, vol. 134, p. 15. https://doi.org/10.1021/ja206030c

    Article  CAS  PubMed  Google Scholar 

  20. Zheng, L.Y., Chi, Y.W., Dong, Y.Q., Lin, J.P., and Wang, B.B., J. Am. Chem. Soc., 2009, vol. 131, p. 4564. https://doi.org/10.1021/ja809073f

  21. Ding, H., Wei, J.S., Zhong, N., Gao, Q.Y., and Xiong, H.M., Langmuir, 2017, vol. 33, p. 12635. https://doi.org/10.1021/acs.langmuir.7b02385

    Article  CAS  PubMed  Google Scholar 

  22. Song, Z.Q., Quan, F.Y., Xu, Y.H., Liu, M.L., Cui, L., and Liu, J.Q., Carbon, 2016, vol. 104, p. 169. https://doi.org/10.1016/j.carbon.2016.04.003

    Article  CAS  Google Scholar 

  23. Cao, L., Jia, D.D., Rong, Y.L., Liu, C., and Wang, D.J., Chem. Lett., 2013, vol. 43, p. 246. https://doi.org/10.1246/cl.130877

    Article  CAS  Google Scholar 

  24. Sharma, A., Gadly, T., Gupta, A., Ballal, A., Ghosh, S.K., and Kumbhakar, M., J. Phys. Chem. Lett., 2016, vol. 7, p. 3695. https://doi.org/10.1021/acs.jpclett.6b01791

    Article  CAS  PubMed  Google Scholar 

  25. Wang, N., Chai, H.J., Dong, X.L., Zhou, Q., and Zhu, L.H., Food Chem., 2018, vol. 258, p. 51. https://doi.org/10.1016/j.foodchem.2018.03.050

    Article  CAS  PubMed  Google Scholar 

  26. Zhu, S.J., Meng, Q.M., Wang, L., Zhang, J.H., Song, Y.B., Jin, H., Zhang, K., Sun, H.C., Wang, H.Y., and Yang, B., Angew. Chem. Int. Ed., 2013, vol. 52, p. 3953. https://doi.org/10.1002/anie.201300519

    Article  CAS  Google Scholar 

  27. Ding, H., Wei, J.S. and Xiong, H.M., Nanoscale, 2014, vol. 6, p. 13817. https://doi.org/10.1039/C4NR04267K

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by PhD research foundation (project no. 2019YB003) of Hebei Normal University of Science and Technology University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Lan or D. Wang.

Ethics declarations

No conflict of interest was declared by the authors.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, S., Yang, Z., Ren, J. et al. Fluorescence Properties of EDTA Carbon-Dots and Its Application in Iron Ions Detection. Russ J Gen Chem 93, 403–408 (2023). https://doi.org/10.1134/S1070363223020238

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223020238

Keywords:

Navigation