Skip to main content
Log in

Synthesis, DFT Calculation, DNA Binding, and Biological Evaluation of Some Mononuclear Ru(III) Сomplexes with 2,6-Bis(2-benzimidazolyl)pyridine Bearing Different p-Substituted Heterochalcones

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Synthesis of five mononuclear ruthenium(III) complexes with Schiff's base ligand was performed using 2,6-bis(1H-benzo[d]imidazole-2-yl)pyridyldichlororuthenium(III) hydrate reacted with different substituted pyridyl chalcone. The complexes were characterized by elemental analysis, FT-IR, ESR, electronic absorption, and mass spectral studies. The geometry of metal complexes was optimized by Gaussian-09 using B3LYP as the basis set. The anti-mycobacterial activity of the ligands and complexes was evaluated. The anti-tumor activity of ligands and complexes was evaluated on human chronic myelogenous leukemia cancer cell line K562 by the MTT method. The DNA binding affinity was further endorsed for ct-DNA of complexes and the binding constant was determined. The docking of metal complexes was also carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme

REFERENCES

  1. Nagamani, C., Reddy, P.V., Reddy, M.R., Reddy, K.L., and Styanarayana, S., Russ. J. Gen. Chem., 2020, vol. 90, no. 12, p. 2456. https://doi.org/10.1134/S1070363220120385

    Article  CAS  Google Scholar 

  2. Antonarakis, E.S. and Emadi, A., Chemother. Pharmacol., 2010, vol. 66, no. 1, p. 1. https://doi.org/10.1007/s00280-010-1293-1

    Article  CAS  Google Scholar 

  3. Dupureur, C., and Barton, J.K., Comprehensive Supramolecular Chemistry, Lehn, J.-M. , Ed., New York: Pergamon, 1997, vol. 5, p. 295.

  4. Xiong, Y., and Ji, L-N., Coord. Chem. Rev., 1998, vol. 9583, p. 185.

    Google Scholar 

  5. Tysoe, S.A., Morgan, R.J., Baker, D., and Strekas, T.C., J. Phys. Chem., 1993, vol. 97, p. 1707. https://doi.org/10.1021/j100110a038

    Article  CAS  Google Scholar 

  6. Mishra, L., and Sinha, R., Ind. J. Chem. Chem. A, 2000, vol. 39, p. 1131.

  7. Nowakowska, Z., Euro. J. Med. Chem., 2007, vol. 42, p. 125. https://doi.org/10.1016/j.ejmech.2006.09.019

    Article  CAS  Google Scholar 

  8. Dhar, D.N., Chemistry of Chalcones and Related Compounds, New York: John Wiley, vol. 38, p. 931.

  9. Prasad, Y.R., Kumar, P.P., Kumar, P.R., and Rao, A.S., E.-J. Chem. 2008, vol. 5, no. 1, p. 144. https://doi.org/10.1155/2008/602458

  10. Said, G.E., Girges, M.M., and Abdel-Galil, E.B., Russ. J. Gen. Chem.., 2021, vol. 91, no. 12, p. 2527. https://doi.org/10.1134/S1070363221120240

  11. Mantasha, I., Md Kausar R., Shahid, M., Ansari, A., Musheer, A, and Ishaat, M.K. Appl. Organometal. Chem., 2019, vol. 33, p. e5006. https://doi.org/10.1002/aoc.5006

  12. Naqi Ahamad, M., Shahid, M., Ansari, A., Kumar, M., Khan, I.M., Musheer, A., Rahisuddin, and Arif, R., New J. Chem., 2019, vol. 43, p. 7511. https://doi.org/10.1039/c9nj00228f

    Article  CAS  Google Scholar 

  13. Sama, F., Raizada, M., Ashafaq, M., Ahamad, M.N., Mantasha, Iman, I.K., Shahid, M., Rahisuddin, Arif, R., Shah, N.A., and Saleh, H.A.M., J. Mol. Struct., 2019, vol. 1176, p. 283. https://doi.org/10.1016/j.molstruc.2018.08.081

  14. Mantasha, M., Shahid, M., Ahmad, R.R., Arif, S., Tasneem, F., Sama, I.A., and Ansari, New J. Chem., 2019, vol. 43, p. 622. https://doi.org/10.1039/c8nj04122a

    Article  CAS  Google Scholar 

  15. Miyachiro, M.M., Contreras-Martel, C., and Dessen, A., Biochemistry, 2020, vol. 93: p. 273. https://doi.org/10.1007/978-3-030-28151-98

    Article  Google Scholar 

  16. Cushnie, T.P., O’Driscoll, N.H., and Lamb, A.J., Mol. Life Sci., 2016, vol. 73, no. 23, p. 4471. https://doi.org/10.1007/s00018-016-2302-2W

  17. Nguyen-Distèche, M., Leyh-Bouille, M., and Ghuysen, J.M., Biochem., J., 1982, Vol. 207, no. 1, p. 109. https://doi.org/10.1042/bj2070109

    Article  Google Scholar 

  18. Genetics Home Reference. National Institute of Health.

  19. Moore, S.A. and Jencks, W.P., J. Biol. Chem., 1982, vol. 257, no. 18, p. 10882. https://doi.org/10.1016/S0021-9258(18)33907-3.PMID6955307

  20. Wishart, D., Tryptophan Metabolism, Small Molecule Pathway Database, Department of Computing Science and Biological Sciences, University of Alberta.

  21. Singh, A.K., Saxena, G., Dixit, S., Hamidullah, Singh, Sachin. K., Singh, S.K., Arshad, M., and Konwer, R., J. Mol. Strct., 2016, vol. 1111, p. 90. https://doi.org/10.1016/j.molstruc.2016.01.070

    Article  CAS  Google Scholar 

  22. Singh, N.K., Agarawal, N., and Agarawal, R.C., Indian J. Chem. A, 1985, vol. 24, p. 617.

  23. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds: Theory and Applications in Inorganic Chemistry, New York: John Wiley & Sons, 1997.

  24. Bondock, S. and Nasi, T., Russ. J. Gen. Chem., 2021, vol. 91, no. 3, p. 488. https://doi.org/10.1134/S1070363221030178

    Article  CAS  Google Scholar 

  25. Lahari, G.K., Bhattacharya, S., and Ghosh, B.K., and Chakaravorty, A., Inorg. Chem., 1987, vol. 26, p. 4324. https://doi.org/10.1021/ic00273a010

    Article  Google Scholar 

  26. Maki, A.H. and McGarvery, B.R., J. Chem. Phys., 1958, vol. 29, p. 31. https://doi.org/10.1063/1.1744456

    Article  CAS  Google Scholar 

  27. Halcrow, M.A., Chia, L.M.L., Davies, J.E., Liu, X., Mclnnes, E.J., Yellowless, L.J., McInnes, E.J.L., and Mabbs, F.E., Chem. Commun., 1998, p. 2465. https://doi.org/10.1039/A807076H

  28. Mishra, P., Khrae, M., and Gautam, S.K., Synth. React. Inorg. Metal Org. Chem., 2002, vol. 32, p. 1485. https://doi.org/10.1081/sim-120014864

  29. Abragam, A., and Bleaney, B., EPR of Transition Ion, Oxford: Charedon, 1970.

  30. Khan, M.M.T, Khan, N.H, Kureshy, R.T. and Boricha, A., Inorg. Chem. Acta., 1990, vol. 174, no. 2, p. 174. https://doi.org/10.1016/s0020-1693(00)80297-2

    Article  Google Scholar 

  31. Ramadan, A.E.M. and Mehasseb, I.M.E, Trans. Met. Chem., 1997, vol. 22, p. 529. https://doi.org/10.1023/a:1018588019441

    Article  CAS  Google Scholar 

  32. Zhang, Q.L, Liu, J.G., Chao, H, Xue, G.Q., and Ji, L., J. Inorg. Biochem., 2001, vol. 83, p. 49. https://doi.org/10.1016/s0162-0134(00)00132-x

    Article  CAS  PubMed  Google Scholar 

  33. Lincoln, P., Broo, A., and Nordén, B., J. Am. Chem. Soc., 1996, vol. 118, p. 2644. https://doi.org/10.1021/ja953363l

    Article  CAS  Google Scholar 

  34. Barton, J.K., Danishefsky, A., and Goldberg, J., J. Am. Chem. Soc., 1984, vol. 106, p. 2172. https://doi.org/10.1021/ja00319a043

    Article  CAS  Google Scholar 

  35. Chow, C.S. and Barton, J.K., Methods in Enzymology, 1992, vol. 212, p. 219. https://doi.org/10.1016/0076-6879(92)12014-H

    Article  CAS  PubMed  Google Scholar 

  36. Wolfe, A., Shimer, G.H., and Meehan, T., Biochemistry, 1987, vol. 26, p. 6392. https://doi.org/10.1021/bi00394a013

    Article  CAS  PubMed  Google Scholar 

  37. Pyle, A.M., Rehmann, J., Meshoyrer, R., Kumar, C.V., Turro, N.J., and Barton, J.K., J. Am. Chem. Soc., 1989, vol. 111, p. 3051. https://doi.org/10.1021/ja00190a046

  38. Zou, X.-H., Ye, B.-H., Li, H., Zhang, Q.-L., Chao, H., Liu, J.-G., Ji, L.-N., and Li, X.-Y., J. Biol. Inorg. Chem., 2001, vol. 6, p. 143. https://doi.org/10.1007/s007750000183

    Article  CAS  PubMed  Google Scholar 

  39. GraphPad Prism 5.0, 2011. http://www.graphpad.com/help/prism5/prism5help.html

  40. Griffith, D., Cecco, S., Zangrando, E., Bergami, A., Sava, G., and Marmion C., J. Biol. Inorg. Chem., 2008, vol. 13, p. 511. https://doi.org/10.1007/s00775-007-0337-4

  41. Ashok, D., Thara, G., Dharavath, R., Kumar, B.K., Sarasija, M., and Bhima, B., Russ. J. Gen. Chem., 2022, vol. 92, no. 4, p. 718. https://doi.org/10.1134/S1070363222040132

  42. Sarna, S., and Bhola, R.K., Curr. Sci., 2007, vol. 93, p.130.

    Google Scholar 

  43. Martin, A., Portaels, F., and Palomino, J.C., J. Antimicrob. Chemoth., 2007, vol. 59, p. 175. https://doi.org/10.1093/jac/dkl477

    Article  CAS  Google Scholar 

  44. Martin, A., Palomino, J.C., and Portales, F., J. Clin. Microbiol., 2005, vol. 43, p. 1612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Palomino, J.C., Martin, A., Camacho, M., Guerra, H., Swings, J., and Portaels, F., Antimicrobial Agents Chemother. 2002, vol. 46, p. 2720. https://doi.org/10.1128/jcm.43.4.1612-1616.2005

  46. Al-Noor, T.H., Mohapatra, R.K., Azam, M., Abdul Karem, L.K., Mohapatra, P.K., Ibrahim, A.A., Parhi, P.K., Dash, G.C., M. El-ajaily, M., Al-Resayes, S., Raval, M.K., and Pintilie, L., J. Mol. Struct., 2021, vol. 1229, p. 12983. https://doi.org/10.1016/j.molstruc.2020.129832

    Article  CAS  Google Scholar 

  47. Ghuysen, J.M., Trends in Mmicrobiol., 1994, vol. 2, p. 372. https://doi.org/10.1016/0966-842X

    Article  CAS  Google Scholar 

  48. Ghuysen, J.M., Annu. Rev. Microbiol., 1991, vol. 45, p. 37. https://doi.org/10.1146/annurev.mi.45.100191.000345

    Article  CAS  PubMed  Google Scholar 

  49. Macheboeuf, P., Contreras-Martel, C., Job, V., Dideberg, O., and Dessen, A., FEMS Microbiol. Rev., 2006, vol. 30, p. 673. https://doi.org/10.1111/j.1574-6976.2006.00024.x

    Article  CAS  PubMed  Google Scholar 

  50. Trott, O. and Olson, A.J., J. Comp. Chem., 2009, vol. 31, p. 455. https://doi.org/10.1002/jcc.21334

  51. Srivastava, S.K., Rajasree, K., and Gopal, B., Proteins Proteomics, 2011, vol. 1814, p. 1349. https://doi.org/10.1016/j.bbapap.2011.06.008

    Article  CAS  Google Scholar 

  52. Zeng, Q., Allen, J.G., Bourbeau, M.P., Wang, X., Yao, G., Tadesse, S., Rider, J.T., Yuan, C.C., Hong, F., Lee, M.R., Zhang, S., Lofgren, J.A., Freeman, D.J., Yang, S., Li, C., Tominey, El., Huang, X., Hoffman, D., Yamane, H.K., Fotsch, C., Dominguez, C., Randall, H., and Zhang, X., Bioorg. Med. Chem. Lett., 2010, vol. 20, p. 1559. https://doi.org/10.1016/j.bmcl.2010.01.067

    Article  CAS  PubMed  Google Scholar 

  53. Herbst, E.A., MacPherson, R.E., LeBlanc, P.J., Roy, B.D., Jeoung, N.H., Harris R.A., and Peters, S.J., Am. J. Phys. Regul., Integr. and Compar. Phys., 2014, vol. 306, no. 2, p. R1027. https://doi.org/10.1152/ajpregu.00150.2013.PMC3921314.PMID24305065

  54. Huynh, V.A. and Sanguinetti, T., Gene Regulatory Network Inference: An Introductory Survey, 2018, p. 1. https://doi.org/10.1007/978-1-4939-8882-2_1

  55. Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., and Olson, A.J.G., J. Comput. Chem, 2009, vol. 1, p. 72. https://doi.org/10.1002/jcc.21256

    Article  CAS  Google Scholar 

  56. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E., Nucl. Acids. Res., 2000, vol. 28, p. 235. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, and E., Hutchison, G.R., Aust. J. Chem., 2012, vol. 4, p. 1. https://doi.org/10.1186/1758-2946-4-17

    Article  CAS  Google Scholar 

  58. Schrödinger, L., The PyMOL Molecular Graphics System, 2010.

  59. Pahonțu, E., Proks, M., Shova, S., Lupașcu, G., Ilieș, D.C., Bărbuceanu, S.F., Socea, L.I., Badea, M., Păunescu, V., DorinIstrati, Gulea, A., Drăgănescu, D., and Pîrvu, C.E.D., Appl. Organometal. Chem., 2019, vol. 33, no. 11, p. 1. https://doi.org/10.1002/aoc.5185

    Article  CAS  Google Scholar 

  60. Bondock, S. and Nasr, T. Russ. J. Gen. Chem., 2021, vol. 91, p. 488. https://doi.org/10.1134/S1070363221040307

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge IIT (Mumbai) for ESR spectroscopy, and also CDRI (Lucknow) for biological activity study. The authors are thankful to the Head of the Department of Chemistry, Lucknow University for extending laboratory, NMR facilities, and FT-IR facilities under DST-PURSE.

Funding

This work was financially supported by UP Government (project no.47/2021/606/70-4-2021-4(56)/2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Singh.

Ethics declarations

No conflict of interest was declared by the authors.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Singh, R.K., Arshi, F. et al. Synthesis, DFT Calculation, DNA Binding, and Biological Evaluation of Some Mononuclear Ru(III) Сomplexes with 2,6-Bis(2-benzimidazolyl)pyridine Bearing Different p-Substituted Heterochalcones. Russ J Gen Chem 93, 375–388 (2023). https://doi.org/10.1134/S1070363223020202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223020202

Keywords:

Navigation