Skip to main content
Log in

Synthesis of TiO2/Gd2O3 and TiO2/Gd2O3/Ag Nanomaterials. Application in Photocatalytic Degradation Reactions

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A method of template synthesis of nanocrystalline titanium(IV) oxide and its modification with gadolinium(III) and silver oxide nanoparticles have been developed. The composition and structure of the synthesized materials were characterized by X-ray phase analysis and IR spectroscopy. The specific surface area and pore size distribution were determined. The photocatalytic properties of the synthesized TiO2/Gd2O3 and TiO2/Gd2O3/Ag nanomaterials in the degradation reaction of methyl orange aqueous solutions upon irradiation with UV light were estimated. It was found that the introduction of gadolinium(III) oxide increases the photocatalytic activity of the material, and the introduction of silver particles makes the photocatalyst sensitive to light with a shorter wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Jeon, S., Ko, J.W., and Ko, W.B., Catalysts, 2021, vol. 11, no. 6, p. 742. https://doi.org/10.3390/catal11060742

    Article  CAS  Google Scholar 

  2. Park, I.Y., Kim, D., Lee, J., Lee, S. H., and Kim, K.J., Mater. Chem. Phys., 2007, vol. 106, no. 1, p. 149. https://doi.org/10.1016/j.matchemphys.2007.05.050

    Article  CAS  Google Scholar 

  3. Anishur Rahman, A.T.M., Majewski, P., and Vasilev, K., Contrast Media Mol. Imaging, 2013, vol. 8, no. 1, p. 92. https://doi.org/10.1002/cmmi.1481

    Article  CAS  PubMed  Google Scholar 

  4. Sakai, N., Zhu, L., Kurokawa, A., Takeuchi, H., Yano, S., Yanoh, T., Wada, N., Taira, S., Hosokai, S., Usui, A., Machida, Y., Saito, H., and Ichiyanagi, Y., J. Phys. Conf. Ser., 2012, vol. 352, no. 1, p. 012008. https://doi.org/10.1088/1742-6596/352/1/012008

    Article  CAS  Google Scholar 

  5. Peng, J., Hojamberdiev, M., Xu, Y., Cao, B., Wang, J., and Wu, H., J. Magn. Magn. Mater., 2011, vol. 323, no. 1, p. 133. https://doi.org/10.1016/j.jmmm.2010.08.048

    Article  CAS  Google Scholar 

  6. Ballem, M.A., Söderlind, F., Nordblad, P., Käll, P.O., and Odén, M., Micropor. Mesopor. Mater., 2013, vol. 168, p. 221. https://doi.org/10.1016/j.micromeso.2012.10.009

    Article  CAS  Google Scholar 

  7. Bakovets, V.V., Trushnikova, L.N., Plyusnin, P.E., Korolkov, I.V., Dolgovesova, I.P., Pivovarova, T.D., and Savintseva, S.A., Russ. J. Gen. Chem., 2013, vol. 83, no. 10, p. 1808. https://doi.org/10.1134/S1070363213100034

    Article  CAS  Google Scholar 

  8. Iwako, Y., Akimoto, Y., Omiya, M., Ueda, T., and Yokomori, T., J. Lumin., 2010, vol. 130, no. 8, p. 1470. https://doi.org/10.1016/j.jlumin.2010.03.014

    Article  CAS  Google Scholar 

  9. Muller, A., Heim, O., Panneerselvam, M., and WillertPorada, M., Mater. Res. Bull., 2005, vol. 40, no. 12, p. 2153. https://doi.org/10.1016/j.materresbull.2005.07.006

    Article  CAS  Google Scholar 

  10. Ahrén, M., Selegard, L., Klasson, A., Soderlind, F., Abrikossova, N., Skoglund, C., Bengtsson, T., Engstrom, M., Kall, P., and Uvdal, K., Langmuir, 2010, vol. 26, no. 8, p. 5753. https://doi.org/10.1021/la903566y

    Article  CAS  PubMed  Google Scholar 

  11. Dědková, K., Kuzníkova, L., Pavelek, L., Matejova, K., Kupkova, J., Cech Barabaszova, K., Vana, R., Burda, J., Vlcek, J., Cvejn, D., and Kukutschova, J., Mater. Chem. Phys., 2017, vol. 197, p. 226. https://doi.org/10.1016/j.matchemphys.2017.05.039

    Article  CAS  Google Scholar 

  12. Zhou, X., Hu, Ch., Liu, Xi., Chen, W., Tang, Qu., and Li, Y., J. Rare Earths, 2020, vol. 38, no. 1, p. 108. https://doi.org/10.1016/j.jre.2019.01.011

    Article  CAS  Google Scholar 

  13. Singh, G., McDonagh, B.H., Hak, S., Peddis, D., Bandopadhyay, S., Sandvig, I., Sandvig, A., and Glomm, W., J. Mater. Chem. B, 2017, vol. 5, no. 3, p. 418. https://doi.org/10.1039/C6TB02854C

    Article  CAS  PubMed  Google Scholar 

  14. Cho, M., Sethi, R., Anantanarayanan, J.S., Lee, S.S., Benoit, D., Taheri, N., Decuzzi, P., and Colvin, V., Nanoscale, 2014, vol. 6, no. 22, p. 13637. https://doi.org/10.1039/C4NR03505D

    Article  CAS  PubMed  Google Scholar 

  15. Fu, G., He, A., Jin, Y., Cheng, Q., and Song, J., Bioresources, 2012, vol. 7, no. 2, p. 2319. https://doi.org/10.15376/biores.7.2.2319-2329

    Article  CAS  Google Scholar 

  16. Vakhrushev, A.Y., Boitsova, T.B., Gorbunova, V.V., and Stozharov, V.M., Inorg. Mater., 2017, vol. 53, no. 2, p. 171. https://doi.org/10.1134/S0020168517020157

    Article  CAS  Google Scholar 

  17. Jiang, X., Yu, L., Yao, Ch., Zhang, F., Zhang, J., and Li, Ch., Materials, 2016, vol. 9, no. 5, p. 323. https://doi.org/10.3390/ma9050323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu, D., Li, Ch., Zhang, D., Wang, L., Zhang, Xi., Shi, Z., and Lin, Q., J. Rare Earths, 2019, vol. 37, no. 8, p. 845. https://doi.org/10.1016/j.jre.2018.10.011

    Article  CAS  Google Scholar 

  19. Mkhalid, I.A., Fierro, J.L.G., Mohamed, R.M., and Alshahri, A.A., Appl. Nanosci., 2020, vol. 10, no. 10, p. 3773. https://doi.org/10.1007/s13204-020-01479-8

    Article  CAS  Google Scholar 

  20. Vakhrushev, A.Y., Krainov, D.S., Boitsova, T.B., Gorbunova, V.V., and Pak, V.N., Russ. J. Appl. Chem., 2020, vol. 93, no. 2, p. 274. https://doi.org/10.1134/S1070427220020172

    Article  CAS  Google Scholar 

  21. Moran, P.D., Bowmaker, G.A., Cooney, R.P., Finnie, K.S., Bartlett, J.R., and Woolfrey, J.L., Inorg. Chem., 1998, vol. 37, no. 11, p. 2741. doi 10.1021/ic9709436

    Article  CAS  PubMed  Google Scholar 

  22. Jiang, Xu., Yu, L., Yao, Ch., Zhang, F., Zhang, J., and Li, Ch., Materials, 2016, vol. 9, no. 5, p. 323. https://doi.org/10.3390/ma9050323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ananth, A. and Mok, Y., Nanomaterials, 2016, vol. 6, no. 3, p. 42. https://doi.org/10.3390/nano6030042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Waterhouse, G.I.N., Bowmaker, G.A., and Metson, J.B., Phys. Chem. Chem. Phys., 2001, vol. 3, no. 17, p. 3838. https://doi.org/10.1039/b103226g

    Article  CAS  Google Scholar 

  25. Langford, J.I. and Wilson, A.J.C., J. Appl. Cryst., 1978, vol. 11, no. 2, p. 102. https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  26. Zalas, M., J. Rare Earths, 2014, vol. 32, no. 6, p. 487. https://doi.org/10.1016/S1002-0721(14)60097-1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to А. Yu. Vakhrushev.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paromova, А.А., Sinitsina, А.А., Boitsova, Т.B. et al. Synthesis of TiO2/Gd2O3 and TiO2/Gd2O3/Ag Nanomaterials. Application in Photocatalytic Degradation Reactions. Russ J Gen Chem 93, 345–351 (2023). https://doi.org/10.1134/S1070363223020159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223020159

Keywords:

Navigation