Skip to main content
Log in

Study of the Schiff Base to Enamine-Ketone Rearrangement upon Condensation of Formyl Functionalized 2-Oxaindane Series Spiropyran with Aliphatic Amines

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

This work focuses on the formyl derivative of 2-oxaindane series spiropyran under its condensation reaction. The data indicated that all products are thermodynamically stable enamine-ketone tautomeric form in both DMSO solution and solid state. This finding can be explained by the migration of proton in 7-hydroxy group to the azomethine nitrogen, which is conjugated with electrocyclic opening of the spirounit in the non-stable Schiff-bases. We observe the enamine-ketones dynamic equilibrium of Z-, E-isomers in the DMSO solution. X-Ray diffraction study was performed for single crystalline sample of aminoethanol derivative. The synthesized compounds were evaluated in vitro cytotoxic activity against four typical human cell lines, showing moderate activity against lung carcinoma (LU-1), hepatocellular carcinoma (Hep-G2), breast carcinoma (MCF-7), and undifferentiated thyroid carcinomas (8505c). Among them, the compound with R = i-Pr showed the best activity with IC50 values 10.60 (MCF-7), and 10.55 µM (8505c). The in vitro antioxidant activity test using 1,1-diphenyl-2-picrylhydrazyl (DPPH) showed that all the synthesized compounds have weak or no activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.
Fig. 2.

REFERENCES

  1. Eltsov, A.V., Organic Photochromes, New York: Consultants Bureau, 1990. p. 280.

  2. Berkovic, G., Krongauz, V., and Weiss, V., Chem. Rev., 2000, vol. 100, p. 1741. https://doi.org/10.1021/cr9800715

  3. Durr, H., and Bouas-Laurent, H., Photochromism: Molecules and Systems: Molecules and Systems, Amsterdam: Elsevier, 2003.

  4. Hong, Y., Zhang, P., Wang, H., Yu, M., Gao, Y., and Chen, J., Sensors and Actuators (B), 2018, vol. 272, p. 340. https://doi.org/10.1016/j.snb.2018.05.175

    Article  CAS  Google Scholar 

  5. Williams, D.E., Martin, C.R., Dolgopolova, A.E., Swifton, A., Godfrey, D.C., Ejegbavwo, O.A., Pellechia, P.J., Smith, M.D., and Shustova, N.B., J. Am. Chem. Soc., 2018, vol. 140, p. 7611. https://doi.org/10.1021/jacs.8b02994

    Article  CAS  PubMed  Google Scholar 

  6. Minkin, V.I., Russ. Chem. Bull., 2008, vol. 57, p. 687. https://doi.org/10.1007/s11172-008-0111-y

    Article  CAS  Google Scholar 

  7. Schwartz, H.A., Ruschewitz, U., and Heinke, L., Photochem. Photobiol. Sci., 2018, vol. 17, p. 864. https://doi.org/10.1039/C7PP00456G

    Article  CAS  PubMed  Google Scholar 

  8. Joseph, G., Pichardo, J., and Chen, G., Analyst, 2010, vol. 135, p. 2303. https://doi.org/10.1039/C0AN00263A

    Article  CAS  PubMed  Google Scholar 

  9. Kimura, K., and Nakahara, Y., Anal. Sci., 2009, vol. 25, p. 9. https://doi.org/10.2116/analsci.25.9

    Article  CAS  PubMed  Google Scholar 

  10. Shao, N., Jin, J. Y., Wang, H., Zhang, Y., Yang, R.H., and Chan, W.H., Anal. Chem., 2008, vol. 80, p. 3466. https://doi.org/10.1021/ac800072y

    Article  CAS  PubMed  Google Scholar 

  11. Sahoo, P.R., and Prakash, K., Kumar, S., Coord. Chem. Rev., 2018, vol. 357, p. 18. https://doi.org/10.1016/j.ccr.2017.11.010

    Article  CAS  Google Scholar 

  12. Lukyanov, B.S., and Lukyanova, M.B., Chem. Heterocycl. Compd., 2005, vol. 41, p. 281. https://doi.org/10.1007/s10593-005-0148-x

    Article  CAS  Google Scholar 

  13. Minkin, V.I., Chem. Rev., 2004, vol. 104, p. 2751. https://doi.org/10.1021/cr020088u

    Article  CAS  PubMed  Google Scholar 

  14. Aldoshin, S.M., Lokshin, V.A., Rezonov, A.N., Volbushko, N.V., Shelepin, N.E., Knyazhanskii, M.I., Atovmyan, L.O., and Minkin, V.I., Chem. Heterocycl. Compd., 1987, vol. 23, p. 614. https://doi.org/10.1007/BF00486903

    Article  Google Scholar 

  15. Paramonov, S.V., Lokshin, V., and Fedorova, O.A., J. Photochem. Photobiol. (C), 2011, vol. 12, p. 209. https://doi.org/10.1016/j.jphotochemrev.2011.09.001

    Article  CAS  Google Scholar 

  16. Bianchi, A., Delgado-Pinar, E., GarcíaEspaña, E., Giorgi, C., and Pina, F., Coord. Chem. Rev., 2014, vol. 260, p. 156. https://doi.org/10.1016/j.ccr.2013.09.023

    Article  CAS  Google Scholar 

  17. Guerchais, V., Ordronneau, L., and Le Bozec, H., Coord. Chem. Rev., 2010, vol. 254, p. 2533. https://doi.org/10.1016/j.ccr.2010.01.013

    Article  CAS  Google Scholar 

  18. Kume, S. and Nishihara, H., in Photofunctional Transition Metal Complexes, Yam, V.W.W. , Ed., Heidelberg: Springer Berlin Heidelberg, 2007, p. 79. https://doi.org/10.1007/430_2006_038

  19. Bulanov, A.O., Shcherbakov, I.N., Tupolova, Y.P., Popov, L.D., Lukov, V.V., Kogan, V.A., and Belikov, P.A., Acta Crystallogr. (C), 2009, vol. 65, p. o618. https://doi.org/10.1107/S0108270109044771

  20. Bulanov, A.O, Shcherbakov, I.N., Popov, L.D., Shasheva, E.Y., Belikov, P.A., and Starikova, Z.A., Acta Crystallogr. (C), 2011, vol. 67, p. o85. https://doi.org/10.1107/S0108270111002836

  21. Popov, L.D., Shcherbakov, I.A., Bulanov, A.O., Shasheva, E.Y., Tkachenko, Y.N., Kobeleva, O.I., Vyalova, T.M., and Barachevskii, V.A., Russ. J. Gen. Chem., 2012, vol. 82, p. 1432. https://doi.org/10.1134/S1070363212080166

    Article  CAS  Google Scholar 

  22. Popov, L.D., Bulanov, A.O., Raspopova, E.A., Morozov, A.N., Scherbakov, I.N., Kobeleva, O.I., Valova, T.M., and Barachevskii, V.A., Russ. J. Gen. Chem., 2013, vol. 83, p. 1111. https://doi.org/10.1134/S1070363213060182

    Article  CAS  Google Scholar 

  23. Shcherbakov, I.N., Bulanov, A.O., Revinskii, Y.V., and Popov, L.D., Struct. Chem., 2019, vol. 30, p. 1381. https://doi.org/10.1007/s11224-019-01295-z

    Article  CAS  Google Scholar 

  24. Lazarenko, V.A., Dorovatovskii, P.V., Zubavichus, Y.V., Burlov, A.S., Koshchienko, Y.V., Vlasenko, V.G., and Khrustalev, V.N., Crystals, 2017, vol. 7, p. 325. https://doi.org/10.3390/cryst7110325

    Article  CAS  Google Scholar 

  25. Svetogorov, R.D., Dorovatovskii, P.V., and Lazarenko, V.A., Cryst. Res. Technol., 2020, vol. 55, p. 1900184. https://doi.org/10.1002/crat.201900184

    Article  CAS  Google Scholar 

  26. Kabsch, W., Acta Crystallogr. (D), 2010, vol. 66, p. 125. https://doi.org/10.1107/S0907444909047337

    Article  CAS  PubMed  Google Scholar 

  27. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H., J. Appl. Crystallogr., 2009, vol. 42, p. 339. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  28. Sheldrick, G., Acta Crystallogr. (A), 2008, vol. 64, p. 112. https://doi.org/10.1107/S0108767307043930

    Article  CAS  PubMed  Google Scholar 

  29. Sheldrick, G., Acta Crystallogr. (C), 2015, vol. 71, p. 3. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  30. Spek, A., J. Appl. Crystallogr., 2003, vol. 36, p. 7. https://doi.org/10.1107/S0021889802022112

    Article  CAS  Google Scholar 

  31. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, V.B.G., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, O.K.Y., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R. L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Revision A.02, 2009.

  32. Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  33. Tomasi, J., Mennucci, B., and Cammi, R., Chem. Rev., 2005, vol. 105, p. 2999. https://doi.org/10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  34. Andersson, M.P., and Uvdal, P., J. Phys. Chem. (A), 2005, vol. 109, p. 2937. https://doi.org/10.1021/jp045733a

    Article  CAS  PubMed  Google Scholar 

  35. Bauernschmitt, R., and Ahlrichs, R., Chem. Phys. Lett., 1996, vol. 256, p. 454. https://doi.org/10.1016/0009-2614(96)00440-X

    Article  CAS  Google Scholar 

  36. Casida, M.E., Jamorski, C., Casida, K.C., and Salahub, D.R., J. Chem. Phys., 1998, vol. 108, p. 4439. https://doi.org/10.1063/1.475855

    Article  CAS  Google Scholar 

  37. Stratmann, R.E., Scuseria, G.E., and Frisch, M.J., J. Chem. Phys., 1998, vol. 109, p. 8218. https://doi.org/10.1063/1.477483

  38. Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Langley, J., Cronise, P., Vaigro-Wolff, A., Gray-Goodrich, M., Campbell, H., Mayo, J., and Boyd, M., J. Nat. Cancer Inst., 1991, vol. 83, p. 757. https://doi.org/10.1093/jnci/83.11.757

    Article  CAS  PubMed  Google Scholar 

  39. Shoemaker, H.R., Scudiero, A.D., Melillo, G., Currens, J.M., Monks, P.A., Rabow, A.A., Covell, G.D., and Sausville, A.E., Curr. Top. Med. Chem., 2002, vol. 2, p. 229. https://doi.org/10.2174/1568026023394317

    Article  CAS  PubMed  Google Scholar 

  40. Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J.T., Bokesch, H., Kenney, S., and Boyd, M.R., J. Nat. Cancer Inst., 1990, vol. 82, p. 1107. https://doi.org/10.1093/jnci/82.13.1107

    Article  CAS  PubMed  Google Scholar 

  41. Burits, M., and Bucar, F., Phytother. Res., 2000, vol. 14, p. 323.

    Article  CAS  PubMed  Google Scholar 

  42. Chen, Z., Bertin, R., and Froldi, G., Food Chem., 2013, vol. 138, p. 414. https://doi.org/10.1016/j.foodchem.2012.11.001

    Article  CAS  PubMed  Google Scholar 

  43. Cuendet, M., Hostettmann, K., Potterat, O., and Dyatmiko, W., Helv. Chim. Acta., 1997, vol. 80, p. 1144. https://doi.org/10.1002/HLCA.19970800411

    Article  CAS  Google Scholar 

  44. Marxen, K., Vanselow, K.H., Lippemeier, S., Hintze, R., Ruser, A., and Hansen, U.P., Sensors, 2007, vol. 7, p. 2080. https://doi.org/10.3390/s7102080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

Spectral study was performed using the equipment of Joint Resource Centre “Molecular Spectroscopy”, DFT calculations were performed at JRC “High-performance calculations” of Southern Federal University.

Funding

This work was financially supported by Russian Foundation for Basic Research (project no. 21-53-54007) and the Vietnam Academy of Science and Technology (subject code QTRU01.08/21-22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Bulanov.

Ethics declarations

No conflict of interest was declared by the authors.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, X.T., Bulanov, A.O., Lukov, V.V. et al. Study of the Schiff Base to Enamine-Ketone Rearrangement upon Condensation of Formyl Functionalized 2-Oxaindane Series Spiropyran with Aliphatic Amines. Russ J Gen Chem 93, 215–226 (2023). https://doi.org/10.1134/S1070363223010267

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223010267

Keywords:

Navigation