Skip to main content
Log in

Successive Ionic layers Deposition of Multilayers of [n(Co(OH)2mPt(0)]k Nanocomposites and Their Structural and Chemical Features

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Repeated and alternate treatment of a nickel surface with Na2PtCl6, CoCl2, and NaBH4 solutions with the general formula [n(Co(OH)2mPt(0)]k (n and m denote the number of Successive Ionic layers Deposition (SILD) cycles in the preparation of Co(OH)2 and Pt(0), respectively, and k is the number of their repetitions] leads to the formation of multilayer nanocomposites consisting of Co(OH)2 nanosheets and Pt(0) nanoparticles. Their studying by TEM, SEM, XPS, and X-ray diffraction methods showed that it is possible to change morphological characteristics of both nanosheets and nanoparticles, and also of the arrays which they form, by changing the synthesis program, i.e., for example, the n and m values. The most significant differences in such characteristics are observed for samples obtained at n and m values preset in the range of 1–5. The study of the electrocatalytic behavior of such samples in the reaction of hydrogen evolution during the electrolysis of water in the alkaline region showed that the overvoltage values in the series of such samples are largely determined by the synthesis conditions, and their analyzing in the series of samples obtained according to various algorithms allows us to choose the conditions that provide the lowest overvoltage values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Malygin, A.A., Drozd, V.E., Malkov, A.A., and Smirnov, V.M., Chem. Vap. Dep., 2015, vol. 21, p. 216. https://doi.org/10.1002/cvde.201502013

    Article  CAS  Google Scholar 

  2. Bisengaliev, R.A., Novikov, B.V., Aleskovskiǐ, V.B., Drozd, V.E., Ageev, D.A., Gubaǐdullin, V.I., and Savchenko, A.P., Phys. Solid State, 1998, vol. 40, no. 5, p. 754. https://doi.org/10.1134/1.1130441

    Article  Google Scholar 

  3. Doyle, S., Ryan, L., McCarthy, M.M., Modreanu, M., Schmidt, M., Laffir, F., Povey, I.M., and Pemble, M.E., Mater. Adv., 2022, vol. 3, p. 2896. https://doi.org/10.1039/D1MA00726B

    Article  CAS  Google Scholar 

  4. Lee, L., Hwang, J., Jung, J.W., Kim, J., Lee, H.I., Heo, S., Yoon, M., Choi, S., Long, N.V., Park, J., Jeong, J. W., Kim, J., Kim, K.R., Kim, D.H., Im, S., l, Lee, B.H., and Cho, K., Nat. Commun., 2019, no. 10, p. 1998. https://doi.org/10.1038/s41467-019-09998-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lobinsky, A.A. and Tolstoy, V.P., RSC Adv., 2018, no. 8, p. 29607. https://doi.org/10.1039/C8RA00671G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lobinsky, A.A. and Tolstoy, V.P., J. Sol. St. Chem., 2014, vol. 270, p. 156. https://doi.org/10.1016/j.jssc.2018.09.041

    Article  CAS  Google Scholar 

  7. Popkov, V.I. and Tolstoy, V.P., Surf. Coat. Techn., 2021, vol. 409, p. 126914. https://doi.org/10.1016/j.surfcoat.2021.126914

    Article  CAS  Google Scholar 

  8. Menshchikov, V.S., Belenov, S.V., Guterman, V.E., Novomlinskiy, I.N., Nevel’skaya, A.K., and Nikulin, A.Yu., Russ. J. Electrochem., 2018, vol. 54, no. 11, p. 937. https://doi.org/10.1134/S1023193518130293

    Article  CAS  Google Scholar 

  9. Zhang, S.L., Lu, X.F., Wu, Z.-P., Luan, D., and Wen, X., Angew. Chem. Int. Ed., 2021, vol. 60, p. 19068. https://doi.org/10.1002/anie.202106547

    Article  CAS  Google Scholar 

  10. Wu, H., Zuo, X., Wang, S.-P., Yin, J.-W., Zhang, Y.-N., and Chen, J., Prog. Nat. Sci.: Mater., 2019, vol. 29, p. 356. https://doi.org/10.1016/j.pnsc.2019.05.009

    Article  CAS  Google Scholar 

  11. Xing, Z., Han, C., Wang, D., Li, Q., and Yang, X., CS Catal., 2017, vol. 7, p. 7131. https://doi.org/10.1021/acscatal.7b01994

    Article  CAS  Google Scholar 

  12. Du, P., Wen, Y., Chiang, F.-K., Yao, A., Wang, J.-Q., Kang, J., Chen, L., Xie, G., Liu, X., and Qiu, H.-J., ACS Appl. Mater. Interfaces, 2019, vol. 11, p. 14745. https://doi.org/10.1021/acsami.8b22268

    Article  CAS  PubMed  Google Scholar 

  13. Skibina, L.M., Mauer, D.K., Volochaev, V.A., and Guterman, V.E., Russ. J. Electrochem., 2019, vol. 55, p. 438. https://doi.org/10.1134/S1023193519050136

    Article  CAS  Google Scholar 

  14. Leont’ev, N., Guterman, V.E., Pakhomova, E.B., Guterman, A.V., and Mikheikin, A.S., Nanotechn. Russ., 2009, vol. 4, nos. 3–4, p. 170. https://doi.org/10.1134/S1995078009030045

    Article  Google Scholar 

  15. Malik, B., Ananthara, S., Karthick, K., Pattanayak, D.K., and Kundu, S., Catal. Sci. Technol., 2017, vol. 7, p. 2486. https://doi.org/10.1039/C7CY00309A

    Article  CAS  Google Scholar 

  16. Mauer, D., Belenov, S., Guterman, V., Nikolsky, A., Kozakov, A., Nikulin, A., Alexeenko, D., and Safronenko, O., Catalysts, 2021, vol. 11, p. 1539. https://doi.org/10.3390/catal11121539

    Article  CAS  Google Scholar 

  17. Tolstoy, V.P., Lobinsky, A.A., and Kaneva, M.V., J. Mol. Liq., 2019, vol. 282, p. 32. https://doi.org/10.1016/j.molliq.2019.02.067

    Article  CAS  Google Scholar 

  18. Kaneva, M.V., Gulina, L.B., and Tolstoy, V.P., J. Alloys Compd., 2022, vol. 901, p. 163640. https://doi.org/10.1016/j.jallcom.2022.163640

    Article  CAS  Google Scholar 

  19. Bodhankar, P. M., Sarawade, P.B., Singh, G., Vinu, A., and Dhawale, D.S., J. Mater. Chem. A, 2021, vol. 9, p. 3180. https://doi.org/10.1039/D0TA10712C

    Article  CAS  Google Scholar 

  20. Tang, S., Li, X., Courte, M., Peng, J., and Fichou, D., Inorg. Chem. Front., 2020, vol. 7, p. 2241. https://doi.org/10.1039/D0QI00318B

    Article  CAS  Google Scholar 

  21. Bodhankar, P.M., Sarawade, P.B., Singh, G., Vinu, A., and Dhawale, D.S., J. Mater. Chem. A, 2021, vol. 9, no. 6, p. 3180. https://doi.org/10.1039/d0ta10712c

    Article  CAS  Google Scholar 

  22. Liu, S., Tan, X., Zheng, X., and Liang, S., Ionics, 2020, vol. 26, p. 3531. https://doi.org/10.1007/s11581-020-03491-y

    Article  CAS  Google Scholar 

  23. Cole, K.M., Kirk, D.W., and Thorpe, S.J., Surf. Sci. Spectra, 2020, vol. 27, p. 024013. https://doi.org/10.1116/6.0000318

    Article  CAS  Google Scholar 

  24. Vovk, E.I., Kalinkin, A.V., Smirnov, M.Yu., Klembovskii, I.O., and Bukhtiyarov, V.I., J. Phys. Chem. C, 2017, vol. 121, p. 17297. https://doi.org/10.1021/acs.jpcc.7b04569

    Article  CAS  Google Scholar 

  25. Biesinger, M.C, Payne, B.P., Grosvenor, A.P., Lau, L.W.M., Gerson, A.R., and Smart, R.St.C., Appl. Surface Sci., 2011, vol. 257, p. 2717. https://doi.org/10.1016/j.apsusc.2010.07.086

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies were carried out using the equipment of the Resource Centers “Physical Methods of Surface Research,” “Nanotechnologies,” and “X-Ray Diffraction Research Methods” of St. Petersburg State University.

Funding

This work was supported by the Russian Science Foundation (grant no. 18-19-00370-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Tolstoy.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolstoy, V.P., Kaneva, M.V. Successive Ionic layers Deposition of Multilayers of [n(Co(OH)2mPt(0)]k Nanocomposites and Their Structural and Chemical Features. Russ J Gen Chem 93, 85–90 (2023). https://doi.org/10.1134/S1070363223010127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223010127

Keywords:

Navigation