Skip to main content
Log in

Synthesis, Structure, and Non-Covalent Interactions of 5-Methyl-2,3-dihydrothiazolo[2,3-b]thiazolium Halides

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

2,3-Dihydrothiazolo[2,3-b]thiazolium iodides and bromide have been obtained for the first time via cyclization of the corresponding methallyl- and propinylsulfanyl derivatives of 1,3-thiazole with iodine and bromine in dichloromethane without heating and the use of strong acids. The structure of the obtained compounds has been studied by means of 1H and 13C{1H} NMR spectroscopy. Structure of the 3-iodomethyl-3,5-dimethyl-2,3-dihydrothiazolo[2,3-b][1,3]thiazolium heterocyclic system and the cation‒anion noncovalent interactions have been analyzed on the basis of quantum-chemical simulations with periodic boundary conditions and characterized by means of X-ray diffraction analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Kurhe, Y., Mahesh, R., Devadoss, T., and Gupta, D., J. Pharmacol. Pharmacother., 2014, no. 5, p. 197. https://doi.org/10.4103/0976-500X.136104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cascioferro, S., Parrino, B., Carbone, D., Schillaci, D., Giovannetti, E., Cirrincione, G., and Diana, P., J. Med. Chem., 2020, vol. 63, p. 7923. https://doi.org/10.1021/acs.jmedchem.9b01245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ivanenkov, Y.A., Yamidanov, R.S., Osterman, I.A., Sergiev, P.V., Aladinskiy, V.A., Aladinskaya, A.V., Terentiev, V.A., Veselov, M.S., Ayginin, A.A., Skvortsov, D.A., Komarova, K.S., Sadovnikov, S.V., Matniyazov, R., Sofronova, A.A., Malyshev, A.S., Machulkin, A.E., Petrov, R.A., Lukianov, D., Iarovenko, S., Bezrukov, D.S., Baymiev, A.Kh., and Dontsova, O.A., J. Antibiotics, 2019, vol. 72, p. 827. https://doi.org/10.1038/s41429-019-0211-y

    Article  CAS  Google Scholar 

  4. Dahal, S., Cheng, R., Cheung, P.K., Been, T., Malty, R., Geng, M., Manianis, S., Shkreta, L., Jahanshahi, S., Toutant, J., Chan, R., Park, S., Brockman, M.A., Babu, M., Mubareka, S., Mossman, K., Banerjee, A., Gray Owen, S., Brown, M., Houry, W.A., Chabot, B., Grierson, D., and Cochrane, A., Viruses, 2022, vol. 14. https://doi.org/10.3390/v14010060

  5. Xu, Z., Guo, J., Yang, Y., Zhang, M., Ba, M., Li, Z., Cao, Y., He, R., Yu, M., Zhou, H., Li, X., Huang, X., Guo, Y., and Guo, C., Eur. J. Med. Chem., 2016, vol. 123, p. 309. https://doi.org/10.1016/j.ejmech.2016.07.047

    Article  CAS  PubMed  Google Scholar 

  6. Tratrat, Ch., Haroun, M., Tsolaki, E., Petrou, A., Gavalas, A., Geronikaki, A., Curr. Top. Med. Chem., 2021, vol. 21, no. 4, p. 257. https://doi.org/10.2174/1568026621999201214232458

    Article  CAS  PubMed  Google Scholar 

  7. Gartel, A., Front. Oncology, 2013, vol. 3, p. 150. https://doi.org/10.3389/fonc.2013.00150

    Article  Google Scholar 

  8. Pandit, B., Bhat, U.G., and Gartel, A.L., Cancer Biol. Ther., 2011, vol. 11, no. 1, p. 43. https://doi.org/10.4161/cbt.11.1.13854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gürsoy, E., Dincel, E.D., Naesens, L., and Ulusoy Güzeldemirci, N., Bioorg. Chem., 2020, vol. 95, p. 103496. https://doi.org/10.1016/j.bioorg.2019.103496

    Article  CAS  PubMed  Google Scholar 

  10. Chumakov, V.A., Demchenko, A.M., Krasovskii, A.N., Bukhtiarova, T.A., Mel’nichenko, O.A., Trinus, F.P., and Lozinskii, M.O., Pharm. Chem. J., 1999, vol. 33, p. 421. https://doi.org/10.1007/BF02510093

    Article  CAS  Google Scholar 

  11. He, C., Parrish, D.A., and Shreeve, J.M., Chem. Eur. J., 2014, vol. 20, p. 6699. https://doi.org/10.1002/chem.201402176

    Article  CAS  PubMed  Google Scholar 

  12. Yin, Z., Wang, Q.-X., and Zeng, M.-H., J. Am. Chem. Soc., 2012, vol. 134, p. 4857. https://doi.org/10.1021/ja211381e

    Article  CAS  PubMed  Google Scholar 

  13. Starkholm, A., Kloo, L., and Svensson, P.H., ACS Appl. Energy Mater., 2019, vol. 2, p. 477. https://doi.org/10.1021/acsaem.8b01507

    Article  CAS  Google Scholar 

  14. Shestimerova, T.A., Bykov, M.A., Wei, Z., Dikarev, E.V., and Shevelkov, A.V., Russ. Chem. Bull., 2019, vol. 68, p. 1520. https://doi.org/10.1007/s11172-019-2586-0

    Article  CAS  Google Scholar 

  15. Shestimerova, T.A., Mironov, A.V., Bykov, M.A., Grigorieva, A.V., Wei, Z., Dikarev, E.V., and Shevelkov, A.V., Molecules, 2020, vol. 25, p. 2765. https://doi.org/10.3390/molecules25122765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Savastano, M., Bazzicalupi, C., Gellini, C., and Bianchi, A., Crystals, 2020, vol. 10. https://doi.org/10.3390/cryst10050387

  17. Tanaka, E. and Robertson, N., J. Mater. Chem. (A), 2020, vol. 8, p. 19991. https://doi.org/10.1039/D0TA07377F

    Article  CAS  Google Scholar 

  18. Usoltsev, A.N., Moneim, E., Adonin, S.A., Frolova, L.A., Derzhavskaya, T., Abramov, P.A., Anokhin, D.V., Korolkov, I.V., Luchkin, S.Yu., Dremova, N.N., Stevenson, K.J., Sokolov, M.N., Fedin, V.P., and Troshin, P.A., J. Mater. Chem. (A), 2019, vol. 7, p. 5957.

    Article  CAS  Google Scholar 

  19. Yin, Z., Wang, Q.X., and Hua Zeng, M., J. Am. Chem. Soc., 2012, vol. 134, no. 10, p. 4857. https://doi.org/10.1021/ja211381e

    Article  CAS  PubMed  Google Scholar 

  20. Bogolyubskii, V.A. and Bogolyubskaya, L.T., Chem. Heterocycl. Compd., 1967, vol. 3, p. 519. https://doi.org/10.1007/BF00481589

    Article  Google Scholar 

  21. Bradsher, C.K. and Jones, Jr.W.J., Recl. Trav. Chim. Pays-Bas., 1968, vol. 87, p. 274. https://doi.org/10.1002/recl.19680870306

    Article  CAS  Google Scholar 

  22. Ohtsuka, H., Toyofuku, H., Miyasaka, T., and Arakawa, K., Chem. Pharm. Bull., 1975, vol. 23, p. 3234. https://doi.org/10.1248/cpb.23.3234

    Article  CAS  Google Scholar 

  23. Ohtsuka, H., Miyasaka, T., and Arakawa, K., Chem. Pharm. Bull., 1975, vol. 23, p. 3243. https://doi.org/10.1248/cpb.23.3243

    Article  CAS  Google Scholar 

  24. Ohtsuka, H., Miyasaka, T., and Arakawa, K., Chem. Pharm. Bull., 1975, vol. 23, p. 3254. https://doi.org/10.1248/cpb.23.3254

    Article  CAS  Google Scholar 

  25. Aakeroy, Ch.B., Bryce, D.L., Desiraju, G.R., Frontera, A., Legon, A.C., Nicotra, F., Rissanen, K., Scheiner, S., Terraneo, G., Metrangolo, P., and Resnati, G., Pure Appl. Chem., 2019, vol. 91, no. 11, p. 1889. https://doi.org/10.1515/pac-2018-0713

    Article  CAS  Google Scholar 

  26. Cavallo, G., Metrangolo, P., Pilati, T., Resnati, G., and Terraneo, G., Cryst. Growth Des., 2014, vol. 14, no. 6, p. 2697. https://doi.org/10.1021/cg5001717

    Article  CAS  Google Scholar 

  27. Bol’shakov, O.I., Yushina, I.D., Stash, A.I., Aysin, R.R., Bartashevich, E.V., and Rakitin, O.A., Struct. Chem., 2020, vol. 31, p. 1729. https://doi.org/10.1007/s11224-020-01584-y

    Article  CAS  Google Scholar 

  28. Yushina, I.D., Tarasova, N.M., Kim, D.G., Sharutin, V.V., and Bartashevich, E.V., Crystals, 2019,vol. 9, p. 506. https://doi.org/10.3390/cryst9100506

  29. Bruker (1998). SMART and SAINT-Plus. Versions, 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA.

  30. Bruker (1998). SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA.

  31. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H., J. Appl. Cryst., 2009, vol. 42, p. 339. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  32. Dovesi, R., Erba, A., Orlando, R., ZicovichWilson, C.M., Civalleri, B., Maschio, L., Rerat, M., Casassa, S., Baima, J., Salustro, S., Kirtman, B., WIREs Comput Mol Sci., 2018, vol. 8, p. e1360. https://doi.org/10.1002/wcms.1360

  33. Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  34. Lee, C., Yang, W., and Parr, R.G., Phys. Rev. (B), 1988, vol. 37, no. 2, p. 785. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  35. Gatti, C., Saunders, V.R., and Roetti, C., J. Chem. Phys., 1994, vol. 101, p. 10686. https://doi.org/10.1063/1.467882

    Article  CAS  Google Scholar 

  36. Monkhorst, H.J. and Pack, J.D., Phys. Rev. (B), 1976, vol. 13, p. 5188. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

Download references

Funding

This study was financially supported by the Ministry of Science and Higher Education of the Russian Federation (FENU-2020-0019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Tarasova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasova, N.M., Yushina, I.D., Kim, D.G. et al. Synthesis, Structure, and Non-Covalent Interactions of 5-Methyl-2,3-dihydrothiazolo[2,3-b]thiazolium Halides. Russ J Gen Chem 93, 22–30 (2023). https://doi.org/10.1134/S1070363223010048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223010048

Keywords:

Navigation