Skip to main content
Log in

Green Asymmetric Reduction of Methylacetophenone

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

We studied the possibility of synthesizing optically pure (S)-(–)-1-(4-methylphenyl)ethanol from the corresponding 1-(4-methylphenyl)ethanone catalyzed by D. carotа cells. The effect of exogenous reducing agents on the enantioselectivity of the reduction and the yield of the product was studied. We found conditions that make it possible to obtain (S)-(–)-1-(4-methylphenyl)ethanol by biotransformation of 1-(4-methylphenyl)ethanone catalyzed by D. carota cells for 144 h with 98% yield (76% ee). Bioreduction of the initial 1-(4-methylphenyl)ethanone in the presence of 4% ethanol leads to a decrease in the yield of (S)-(–)-1-(4-methylphenyl)ethanol to 60%, but the optical purity reaches 98% ee. Transformation of 1-(4-methylphenyl)ethanone in the presence of glucose leads to the formation of (S)-(–)-1-(4-methylphenyl)ethanol in 76% yield, while the enantiomeric excess increases to 96% ee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme 2.

REFERENCES

  1. Nguyen, L. A., He, H., and Pham-Huy, Ch., Int. J. Biomed. Sci., 2006, vol. 2, no. 2, p. 85.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Handbook of Green Chemistry and Technology, Clark, J.H. and Macquarrie, D., Eds., London: Blackwell Science: 2002. https://doi.org/10.1002/9780470988305

  3. Biocatalysis in the Pharmaceutical and Biotechnology Industries. Patel, R.N., Boca Raton: Taylor and Francis, 2006. https://doi.org/10.1201/9781420019377

  4. Kazici, H., Bayraktar, E., and Mehmetoglu, Ü., Green Proc. Synth., 2006, vol. 5, no. 2. p. 131. https://doi.org/10.1515/gps-2015-0118

  5. Andrade, L.H., Utsunomiya, R.S., Omori, A.T., Porto, A. L., and Comasseto, J.V., J. Mol. Catal. B: Enzym., 2006, vol. 38, no. 2, p. 84. https://doi.org/10.1016/j.molcatb.2005.11.009

    Article  CAS  Google Scholar 

  6. Demmel, G.I., Bordón, D.L., Vázquez, A.M., Rossi, L.I., and Aimar, M.L., Biocatal. Biotransform., 2020, p. 1. https://doi.org/10.1080/10242422.2020.1789115

  7. Chanysheva, A.R., Vorobyova, T.E., and Zorin, V.V., Tetrahedron, 2019, vol. 75, p. 130494. https://doi.org/10.1016/j.tet.2019.130494

    Article  CAS  Google Scholar 

  8. Chanysheva, A.R., Sheiko, E.A., and Zorin, V.V., Russ. J. Gen. Chem., 2021, vol. 91, no. 13, p. 2953. https://doi.org/10.1134/S1070363221130247

    Article  CAS  Google Scholar 

  9. Chanysheva, A.R., Vorob’eva, T.E., and Zorin, V.V., Russ. J. Gen. Chem., 2017, vol. 87, no. 13, p. 3259. https://doi.org/10.1134/S1070363217130229

    Article  CAS  Google Scholar 

  10. Chanysheva, A.R., Sheiko, E.A., Dibaeva, S.T., Sufiyarova, A.L, and Zorin, V.V.., Bashkir. Khim. Zh., 2020, vol. 27, no. 3, p. 5.

    CAS  Google Scholar 

  11. Chanysheva, A.R., Sheiko, E.A., Yusupova, Yu.K., and Zorin, V.V., Bashkir. Khim. Zh., 2019, vol. 26, no. 2, p. 44.

    CAS  Google Scholar 

  12. Sheiko, E.A., Mednikova, E.E., Vorob’eva, T.E., and Chanysheva, A.R., Bashkir. Khim. Zh., 2018, vol. 25, no. 1, p. 55.

    CAS  Google Scholar 

  13. Chanysheva, A.R., Sufiyarova, A.L., Privalov, N.V., and Zorin, V.V., Izv. Vyssh. Ucheb. Zaved. Khim. Khim. Tekhnol., 2022, vol. 65, no. 8, p. 111. https://doi.org/10.6060/ivkkt.20226508.6637

    Article  CAS  Google Scholar 

  14. Chanysheva, A.R., Yunusova, G.V., Vorob’eva, T.E., and Zorin, V.V., Ekol. Khim., 2017, vol. 26, no. 1, p. 6. https://doi.org/10.1134/S1070363220130022

    Article  CAS  Google Scholar 

  15. Chanysheva, A.R., Privalov, N.V., and Zorin, V.V., Russ. J. Gen. Chem., 2020, vol. 90, p. 2542. https://doi.org/10.1016/S0040-4020(98)00439-6

    Article  CAS  Google Scholar 

  16. Nakamura, K. and Matsuda, T., Tetrahedron, 1998, vol. 54, p. 8393. https://doi.org/10.1016/S0040-4020(98)00439-6

    Article  CAS  Google Scholar 

  17. Matsuda, T., Harada, T., Nakajima, Y., Itoh, T., and Nakamura, K., J. Org. Chem., 2000, vol. 65, p. 157. https://doi.org/10.1021/jo991283k

    Article  CAS  PubMed  Google Scholar 

  18. Ishihara, K., Hamada, H., Hirata, T., and Nakajima, N., J. Mol.Catal. B: Enzym., 2003, vol. 23, p. 145. https://doi.org/10.1016/S1381-1177(03)00080-8

  19. Zarevucka, M., Wimmer, Z., Saman, D., Demnerova, K., and Mackova, M., Tetrahedron: Asymmetry, 2004, vol. 15, p. 1325. https://doi.org/10.1016/j.tetasy.2004.03.006

    Article  CAS  Google Scholar 

  20. Hirata, T., Hamda, H., Aoki, T., and Suga, T., Phytochem., 1982, vol. 21, p. 2209. https://doi.org/10.1016/0031-9422(82)85179-0

    Article  CAS  Google Scholar 

  21. Matsuda, T., Nakajima, Y., Harada, T., and Nakamura, K., Tetrahedron: Asymmetry, 2002, vol. 13, p. 971. https://doi.org/10.1016/S0957-4166(02)00226-4

    Article  CAS  Google Scholar 

  22. Chanysheva, A.R., Sheiko, E.A., and Zorin, V.V., Ekol. Khim., 2018, vol. 27, no. 4, p. 229.

    CAS  Google Scholar 

  23. Chanysheva, A.R. and Zorin, V.V., Indian J. Chem. B, 2020, vol. 59, p. 1381.

    Google Scholar 

Download references

Funding

The work was carried out in accordance with the State Assignment of the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Chanysheva.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chanysheva, A.R., Sufiyarova, A.L., Privalov, N.V. et al. Green Asymmetric Reduction of Methylacetophenone. Russ J Gen Chem 92, 3111–3115 (2022). https://doi.org/10.1134/S1070363222130126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222130126

Keywords:

Navigation