Skip to main content
Log in

Isocyanide-Phosphine Complexes of Palladium(II) Dihalides: Synthesis, Structure, and Resistance to Ligand Disproportionation Reactions

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The structure of isocyanide-phosphine complexes of palladium(II) dihalides [PdX2(CNR)(PPh3)] (X = Cl, Br, I; R = t-Bu, Xyl, and Mes) in CDCl3 solutions and in solid phase, and also their resistance to cis/trans isomerization and ligands disproportionation were studied. The isocyanide-phosphine complexes of palladium(II) chloride, bromide, and iodide in crystals take the cis configuration. In solution isocyanide-phosphine complexes of palladium(II) chloride and bromide exist predominantly in the cis configuration. They are resistant to ligand disproportionation and can be prepared by mixing equivalent amounts of the corresponding bisisocyanide and bisphosphine complexes. In contrast, mixed-ligand isocyanide-phosphine complexes of palladium iodide in solution rapidly form mixtures of cis and trans isomers, and also of bisisocyanide and bisphosphine complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kinzhalov, M.A., Luzyanin, K.V., Boyarskiy, V.P., Haukka, M., and Kukushkin, V.Y., Organometallics, 2013, vol. 32, p. 5212. https://doi.org/10.1021/om4007592

    Article  CAS  Google Scholar 

  2. Timofeeva, S.A., Kinzhalov, M.A., Valishina, E.A., Luzyanin, K.V., Boyarskiy, V.P., Buslaeva, T.M., Haukka, M., and Kukushkin, V.Y., J. Catal., 2015, vol. 329, p. 449. https://doi.org/10.1016/j.jcat.2015.06.001

    Article  CAS  Google Scholar 

  3. Islamova, R.M., Dobrynin, M.V., Vlasov, A.V., Eremina, A.A., Kinzhalov, M.A., Kolesnikov, I.E., Zolotarev, A.A., Masloborodova, E.A., and Luzyanin, K.V., Catal. Sci. Technol., 2017, vol. 7, p. 5843. https://doi.org/10.1039/C7CY02013A

    Article  CAS  Google Scholar 

  4. Luzyanin, K.V., Tskhovrebov, A.G., Carias, M.C., Guedes da Silva, M.F.C., Pombeiro, A.J.L., and Kukushkin, V.Y., Organometallics, 2009, vol. 28, p. 6559. https://doi.org/10.1021/om900682v

    Article  CAS  Google Scholar 

  5. Mancuso, J. and Lautens, M., Org. Lett., 2003, vol. 5, p. 1653. https://doi.org/10.1021/ol034284e

    Article  CAS  Google Scholar 

  6. Villemin, D., Jullien, A., and Bar, N., Tetrahedron Lett., 2007, vol. 48, p. 4191. https://doi.org/10.1016/j.tetlet.2007.04.070

    Article  CAS  Google Scholar 

  7. Barnett, B.R., Labios, L.A., Stauber, J.M., Moore, C.E., Rheingold, A.L., and Figueroa, J.S., Organometallics, 2017, vol. 36, p. 944. https://doi.org/10.1021/acs.organomet.7b00035

    Article  CAS  Google Scholar 

  8. Savicheva, E.A., Kurandina, D.V., Nikiforov, V.A., and Boyarskiy, V.P., Tetrahedron Lett., 2014, vol. 55, p. 2101. https://doi.org/10.1016/j.tetlet.2014.02.044

    Article  CAS  Google Scholar 

  9. Knorn, M., Lutsker, E., and Reiser, O., Organometallics, 2015, vol. 34, p. 4515. https://doi.org/10.1021/acs.organomet.5b00516

    Article  CAS  Google Scholar 

  10. Chay, R.S., Rocha, B.G.M., Pombeiro, A.J.L., Kukushkin, V.Y., and Luzyanin, K.V., ACS Omega, 2018, vol. 3, p. 863. https://doi.org/10.1021/acsomega.7b01688

    Article  CAS  Google Scholar 

  11. Gee, J.C., Fuller, B.A., Lockett, H.-M., Sedghi, G., Robertson, C.M., and Luzyanin, K.V., Chem. Commun., 2018, vol. 54, p. 9450. https://doi.org/10.1039/C8CC04287J

    Article  CAS  Google Scholar 

  12. Rocha, B.G.M., Valishina, E.A., Chay, R.S., Guedes da Silva, M.F.C., Buslaeva, T.M., Pombeiro, A.J.L., Kukushkin, V.Y., and Luzyanin, K.V., J. Catal., 2014, vol. 309, p. 79. https://doi.org/10.1016/j.jcat.2013.09.003

    Article  CAS  Google Scholar 

  13. Hubbert, C., Breunig, M., Carrol, K.J., Rominge, F., and Hashmi, A.S.K., Aust. J. Chem., 2014, vol. 67, p. 469. https://doi.org/10.1071/CH13546

    Article  CAS  Google Scholar 

  14. Miltsov, S.A., Karavan, V.S., Boyarsky, V.P., Gómez-de Pedro, S., Alonso-Chamarro, J., and Puyol, M., Tetrahedron Lett., 2013, vol. 54, p. 1202. https://doi.org/10.1016/j.tetlet.2012.12.060

    Article  CAS  Google Scholar 

  15. Ryabukhin, D.S., Sorokoumov, V.N., Savicheva, E.A., Boyarskiy, V.P., Balova, I.A., and Vasilyev, A.V., Tetrahedron Lett., 2013, vol. 54, p. 2369. https://doi.org/10.1016/j.tetlet.2013.02.086

    Article  CAS  Google Scholar 

  16. Mikhailov, V.N., Savicheva, E.A., Sorokoumov, V.N., and Boyarskii, V.P., Russ. J. Org. Chem., 2013, vol. 49, p. 551. https://doi.org/10.1134/S107042801304009X

    Article  CAS  Google Scholar 

  17. Larsen, C.B. and Wenger, O.S., Inorg. Chem., 2018, vol. 57, p. 2965. https://doi.org/10.1021/acs.inorgchem.7b03258

    Article  CAS  Google Scholar 

  18. Cadierno, V., Crochet, P., Díez, J., García-Garrido, S.E., and Gimeno, J., Organometallics, 2004, vol. 23, p. 4836. https://doi.org/10.1021/om0400651

    Article  CAS  Google Scholar 

  19. Sokolova, E.V., Kinzhalov, M.A., Smirnov, A.S., Cheranyova, A.M., Ivanov, D.M., Kukushkin, V.Y., and Bokach, N.A., ACS Omega, 2022, vol. 7, p. 34454. https://doi.org/10.1021/acsomega.2c04110

    Article  CAS  Google Scholar 

  20. Kinzhalov, M.A., Grachova, E.V., and Luzyanin, K.V., Inorg. Chem. Front., 2022, vol. 9, p. 417. https://doi.org/10.1039/D1QI01288F

    Article  CAS  Google Scholar 

  21. Katkova, S.A., Mikherdov, A.S., Sokolova, E.V., Novikov, A.S., Starova, G.L., and Kinzhalov, M.A., J. Mol. Struct., 2022, vol. 1253, p. 132230. https://doi.org/10.1016/j.molstruc.2021.132230

    Article  CAS  Google Scholar 

  22. Katkova, S.A., Luzyanin, K.V., Novikov, A.S., and Kinzhalov, M.A., New J. Chem., 2021, vol. 45, p. 2948. https://doi.org/10.1039/D0NJ05457G

    Article  CAS  Google Scholar 

  23. Eremina, A.A., Kinzhalov, M.A., Katlenok, E.A., Smirnov, A.S., Andrusenko, E.V., Pidko, E.A., Suslonov, V.V., and Luzyanin, K.V., Inorg. Chem., 2020, vol. 59, p. 2209. https://doi.org/10.1021/acs.inorgchem.9b02833

    Article  CAS  Google Scholar 

  24. Sutton, G.D., Olumba, M.E., Nguyen, Y.H., and Teets, T.S., Dalton Trans., 2021, vol. 50, p. 17851. https://doi.org/10.1039/D1DT03312C

    Article  CAS  Google Scholar 

  25. Na, H., Maity, A., and Teets, T.S., Dalton Trans., 2017, vol. 46, p. 5008. https://doi.org/10.1039/C7DT00694B

    Article  CAS  Google Scholar 

  26. Shahsavari, H.R., Babadi Aghakhanpour, R., Hossein-Abadi, M., Golbon Haghighi, M., Notash, B., and Fereidoonnezhad, M., New J. Chem., 2017, vol. 41, p. 15347. https://doi.org/10.1039/C7NJ03110F

    Article  CAS  Google Scholar 

  27. Ho, P.-Y., Cheng, S.-C., Yiu, S.-M., Au, V.K.-M., Xiang, J., Leung, C.-F., and Ko, C.-C., Inorg. Chem., 2019, vol. 58, p. 11372. https://doi.org/10.1021/acs.inorgchem.9b00560

    Article  CAS  Google Scholar 

  28. Nguyen, Y.H., Soares, J.V., Nguyen, S.H., Wu, Y., Wu, J.I., and Teets, T.S., Inorg. Chem., 2022, vol. 61, p. 8498. https://doi.org/10.1021/acs.inorgchem.2c00510

    Article  CAS  Google Scholar 

  29. Dobrynin, M.V., Kasatkina, S.O., Baykov, S.V., Savko, P.Y., Antonov, N.S., Mikherdov, A.S., Boyarskiy, V.P., and Islamova, R.M., Dalton Trans., 2021, vol. 50, p. 14994. https://doi.org/10.1039/D1DT02823E

    Article  CAS  Google Scholar 

  30. Kinzhalov, M.A., Kashina, M.V., Mikherdov, A.S., Mozheeva, E.A., Novikov, A.S., Smirnov, A.S., Ivanov, D.M., Kryukova, M.A., Ivanov, A.Y., Smirnov, S.N., Kukushkin, V.Y., and Luzyanin, K.V., Angew. Chem. Int. Ed., 2018, vol. 57, p. 12785. https://doi.org/10.1002/anie.201807642

    Article  CAS  Google Scholar 

  31. Kryukova, M.A., Ivanov, D.M., Kinzhalov, M.A., Novikov, A.S., Smirnov, A.S., Bokach, N.A., and Kukushkin, V.Y., Chem. Eur. J., 2019, vol. 25, p. 13671. https://doi.org/10.1002/chem.201902264

    Article  CAS  Google Scholar 

  32. Kashina, M.V., Kinzhalov, M.A., Smirnov, A.S., Ivanov, D.M., Novikov, A.S., and Kukushkin, V.Y., Chem. Asian J., 2019, vol. 14, p. 3915. https://doi.org/10.1002/asia.201901127

    Article  CAS  Google Scholar 

  33. Bulatova, M., Ivanov, D.M., Rautiainen, J.M., Kinzhalov, M.A., Truong, K.-N., Lahtinen, M., and Haukka, M., Inorg. Chem., 2021, vol. 60, p. 13200. https://doi.org/10.1021/acs.inorgchem.1c01591

    Article  CAS  Google Scholar 

  34. Buldakov, A.V., Kinzhalov, M.A., Kryukova, M.A., Ivanov, D.M., Novikov, A.S., Smirnov, A.S., Starova, G.L., Bokach, N.A., and Kukushkin, V.Y., Cryst. Growth Des., 2020, vol. 3, p. 1975. https://doi.org/10.1021/acs.cgd.9b01631

    Article  CAS  Google Scholar 

  35. Sluch, I.M., Miranda, A.J., and Slaughter, L.M., Cryst. Growth Des., 2009, vol. 9, p. 1267. https://doi.org/10.1021/cg801116q

    Article  CAS  Google Scholar 

  36. Hopkinson, M.N., Richter, C., Schedler, M., and Glorius, F., Nature, 2014, vol. 510, p. 485. https://doi.org/10.1038/nature13384

    Article  CAS  Google Scholar 

  37. Huynh, H.V., Chem. Rev., 2018, vol. 118, p. 9457. https://doi.org/10.1021/acs.chemrev.8b00067

    Article  CAS  Google Scholar 

  38. Kinzhalov, M.A. and Luzyanin, K.V., Russ. J. Inorg. Chem., 2022, vol. 67, p. 48. https://doi.org/10.1134/S0036023622010065

    Article  CAS  Google Scholar 

  39. Kinzhalov, M.A. and Boyarskii, V.P., Russ. J. Gen. Chem., 2015, vol. 85, p. 2313. https://doi.org/10.1134/S1070363215100175

    Article  CAS  Google Scholar 

  40. Kinzhalov, M.A. and Luzyanin, K.V., Coord. Chem. Rev., 2019, vol. 399, p. 213014. https://doi.org/10.1016/j.ccr.2019.213014

    Article  CAS  Google Scholar 

  41. Boyarskiy, V.P., Bokach, N.A., Luzyanin, K.V., and Kukushkin, V.Y., Chem. Rev., 2015, vol. 115, p. 2698. https://doi.org/10.1021/cr500380d

    Article  CAS  Google Scholar 

  42. Boyarskiy, V.P., Luzyanin, K.V., and Kukushkin, V.Y., Coord. Chem. Rev., 2012, vol. 256, p. 2029. https://doi.org/10.1016/j.ccr.2012.04.022

    Article  CAS  Google Scholar 

  43. Kashina, M.V., Luzyanin, K.V., Katlenok, E.A., Novikov, A.S., and Kinzhalov, M.A., Dalton Trans., 2022, vol. 51, p. 6718. https://doi.org/10.1039/D2DT00252C

    Article  CAS  Google Scholar 

  44. Ruiz, J., García, L., Perandones, B.F., and Vivanco, M., Angew. Chem. Int. Ed., 2011, vol. 50, p. 3010. https://doi.org/10.1002/anie.201007937

    Article  CAS  Google Scholar 

  45. Ruiz, J., Garcia, L., Mejuto, C., Vivanco, M., Diaz, M.R., and Garcia-Granda, S., Chem. Commun., 2014, vol. 50, p. 2129. https://doi.org/10.1039/C3CC47987K

    Article  CAS  Google Scholar 

  46. Mikherdov, A.S., Kinzhalov, M.A., Novikov, A.S., Boyarskiy, V.P., Boyarskaya, I.A., Dar’in, D.V., Starova, G.L., and Kukushkin, V.Y., J. Am. Chem. Soc., 2016, vol. 138, p. 14129. https://doi.org/10.1021/jacs.6b09133

    Article  CAS  Google Scholar 

  47. Tskhovrebov, A.G., Luzyanin, K.V., Dolgushin, F.M., Guedes da Silva, M.F.C., Pombeiro, A.J.L., and Kukushkin, V.Y., Organometallics, 2011, vol. 30, p. 3362. https://doi.org/10.1021/om2002574

    Article  CAS  Google Scholar 

  48. Chatt, J., Richards, R.H., and Royston, G.H.D, Inorg. Chim. Acta, 1972, vol. 6, p. 669. doi

    Article  CAS  Google Scholar 

  49. Vicenzi, D., Sgarbossa, P., Biffis, A., Tubaro, C., Basato, M., Michelin, R.A., Lanza, A., Nestola, F., Bogialli, S., Pastore, P., and Venzo, A., Organometallics, 2013, vol. 32, p. 7153. https://doi.org/10.1021/om400859q

    Article  CAS  Google Scholar 

  50. Dobrynin, M.V., Sokolova, E.V., Kinzhalov, M.A., Smirnov, A.S., Starova, G.L., Kukushkin, V.Y., and Islamova, R.M., ACS Appl. Polym. Mater., 2021, vol. 3, p. 857. https://doi.org/10.1021/acsapm.0c01190

    Article  CAS  Google Scholar 

  51. Fuertes, S., Chueca, A.J., Arnal, L., Martín, A., Giovanella, U., Botta, C., and Sicilia, V., Inorg. Chem., 2017, vol. 56, p. 4829. https://doi.org/10.1021/acs.inorgchem.6b02826

    Article  CAS  Google Scholar 

  52. Kinzhalov, M.A., Buldakov, A.V., Petrov, A.V., Mahmudov, K.T., Ivanov, A.Y., and Suslonov, V.V., Russ. J. Gen. Chem., 2017, vol. 87, p. 2605. https://doi.org/10.1134/s1070363217110159

    Article  CAS  Google Scholar 

  53. Martínez-Martínez, A.J., Chicote, M.T., and Bautista, D., Inorg. Chim. Acta, 2012, vol. 382, p. 203. https://doi.org/10.1016/j.ica.2011.11.038

    Article  CAS  Google Scholar 

  54. Braunstein, P., Knorr, M., Strampfer, M., Dusausoy, Y., Bayeul, D., DeCian, A., Fischer, J., and Zanello, P., Dalton Trans., 1994, vol, p. 1533. https://doi.org/10.1039/DT9940001533

  55. Koprowski, M., Sebastián, R.-M., Maraval, V., Zablocka, M., Cadierno, V., Donnadieu, B., Igau, A., Caminade, A.-M., and Majoral, J.-P., Organometallics, 2002, vol. 21, p. 4680. https://doi.org/10.1021/om011076m

    Article  CAS  Google Scholar 

  56. Casellato, U., Corain, B., Zecca, M., Michelin, R.A., Mozzon, M., and Graziani, R., Inorg. Chim. Acta, 1989, vol. 156, p. 165. https://doi.org/10.1016/S0020-1693(00)83492-1

    Article  CAS  Google Scholar 

  57. Cobley, C.J., Ellis, D.D., Orpen, A.G., and Pringle, P.G., Dalton Trans., 2000, vol, p. 1101. https://doi.org/10.1039/A908960H

  58. De Munno, G., Bruno, G., Arena, C.G., Drommi, D., and Faraone, F., J. Organomet. Chem., 1993, vol. 450, p. 263. https://doi.org/10.1016/0022-328X(93)80165-8

    Article  CAS  Google Scholar 

  59. Cadierno, V., Diez, J., Garcia-Alvarez, J., Gimeno, J., Nebra, N., and Rubio-Garcia, J., Dalton Trans., 2006, vol, p. 5593. https://doi.org/10.1039/B609359K

  60. Liu, Z., Cao, S., Wu, J., Zanoni, G., Sivaguru, P., and Bi, X., ACS Catal., 2020, vol. 10, p. 12881. https://doi.org/10.1021/acscatal.0c02867

    Article  CAS  Google Scholar 

  61. Yakimanskiy, A., Boyarskaya, I., and Boyarskiy, V., J. Coord. Chem., 2013, vol. 66, p. 3592. https://doi.org/10.1080/00958972.2013.847185

    Article  CAS  Google Scholar 

  62. Klingenberg, M.A., Bogachenkov, A.S., Kinzhalov, M.A., Vasilyev, A.V., and Boyarskiy, V.P., New J. Chem., 2016, vol. 40, p. 3336. https://doi.org/10.1039/C5NJ03038B

    Article  CAS  Google Scholar 

  63. Do, J.-L., Tan, D., and Friščić, T., Angew. Chem. Int. Ed., 2018, vol. 57, p. 2667. https://doi.org/10.1002/anie.201712602

    Article  CAS  Google Scholar 

  64. Gregson, M., Lu, E., Mills, D.P., Tuna, F., McInnes, E.J.L., Hennig, C., Scheinost, A.C., McMaster, J., Lewis, W., Blake, A.J., Kerridge, A., and Liddle, S.T., Nature Commun., 2017, vol. 8, p. 14137. https://doi.org/10.1038/ncomms14137

    Article  CAS  Google Scholar 

  65. Kashina, M.V., Ivanov, D.M., and Kinzhalov, M.A., Crystals, 2021, vol. 11, p. 799. https://doi.org/10.3390/cryst11070799

    Article  CAS  Google Scholar 

  66. Kinzhalov, M.A., Luzyanin, K.V., Boyarskaya, I.A., Starova, G.L., and Boyarskiy, V.P., J. Mol. Struct., 2014, vol. 1068, p. 222. https://doi.org/10.1016/j.molstruc.2014.04.025

    Article  CAS  Google Scholar 

  67. Kirsten, L., Steyl, G., and Roodt, A., Acta Crystallogr. E, 2009, vol. 65, p. m1564. https://doi.org/10.1107/S1600536809045401

  68. Coalter, N.L., Concolino, T.E., Streib, W.E., Hughes, C.G., Rheingold, A.L., and Zaleski, J.M., J. Am. Chem. Soc., 2000, vol. 122, p. 3112. https://doi.org/10.1021/ja9944094

    Article  CAS  Google Scholar 

  69. Lo, K.M. and Ng, S.W., Acta Crystallogr. E, 2009, vol. 65, p. m940. https://doi.org/10.1107/S1600536809027408

  70. Kar, G., Privér, S.H., Jones, L.A., Guo, S.-X., Torriero, A.A.J., Bond, A.M., Bennett, M.A., and Bhargava, S.K., Dalton Trans., 2015, vol. 44, p. 3367. https://doi.org/10.1039/C4DT03268C

    Article  CAS  Google Scholar 

  71. Reinholdt, A. and Bendix, J., Inorg. Chem., 2017, vol. 56, p. 12492. https://doi.org/10.1021/acs.inorgchem.7b01956

    Article  CAS  Google Scholar 

  72. Eseola, A.O., Görls, H., Orighomisan Woods, J.A., and Plass, W., Polyhedron, 2020, vol. 182, p. 114507. https://doi.org/10.1016/j.poly.2020.114507

    Article  CAS  Google Scholar 

  73. Theissmann, T and Bolte, M., Acta Crystallogr. E, 2006, vol. 62, p. m1056. https://doi.org/10.1107/S1600536806013262

  74. Yang, L., Powell, D.R., and Houser, R.P., Dalton Trans., 2007, vol, p. 955. https://doi.org/10.1039/b617136b

  75. Popov, R.A., Mikherdov, A.S., and Boyarskiy, V.P., Eur. J. Inorg. Chem., 2022, vol. 2022, p. e202200217. https://doi.org/10.1002/ejic.202200217

  76. Popov, R.A., Mikherdov, A.S., Novikov, A.S., Myznikov, L.V., and Boyarskiy, V.P., New J. Chem., 2021, vol. 45, p. 1785. https://doi.org/10.1039/D0NJ05386D

    Article  CAS  Google Scholar 

  77. Luzyanin, K.V., Pombeiro, A.J.L., Haukka, M., and Kukushkin, V.Y., Organometallics, 2008, vol. 27, p. 5379. https://doi.org/10.1021/om800517c

    Article  CAS  Google Scholar 

  78. Luzyanin, K.V., Guedes da Silva, M.F.C., Kukushkin, V.Y., and Pombeiro, A.J.L., Inorg. Chim. Acta, 2009, vol. 362, p. 833. https://doi.org/10.1016/j.ica.2008.02.026

    Article  CAS  Google Scholar 

  79. Chay, R.S., Luzyanin, K.V., Kukushkin, V.Y., Guedes da Silva, M.F.C., and Pombeiro, A.J.L., Organometallics, 2012, vol. 31, p. 2379. https://doi.org/10.1021/om300020j

    Article  CAS  Google Scholar 

  80. Anisimova, T.B., Guedes da Silva, M.F.C., Kukushkin, V.Y., Pombeiro, A.J.L., and Luzyanin, K.V., Dalton Trans., 2014, vol. 43, p. 15861. https://doi.org/10.1039/c4dt01917b

    Article  CAS  Google Scholar 

  81. Rassadin, V.A., Yakimanskiy, A.A., Eliseenkov, E.V., and Boyarskiy, V.P., Inorg. Chem. Commun., 2015, vol. 61, p. 21. https://doi.org/10.1016/j.inoche.2015.08.008

    Article  CAS  Google Scholar 

  82. Tskhovrebov, A.G., Luzyanin, K.V., Kuznetsov, M.L., Sorokoumov, V.N., Balova, I.A., Haukka, M., and Kukushkin, V.Y., Organometallics, 2011, vol. 30, p. 863. https://doi.org/10.1021/om101041g

    Article  CAS  Google Scholar 

  83. Boyarskaya, D.V., Bulatov, E., Boyarskaya, I.A., Chulkova, T.G., Rassadin, V.A., Tolstopjatova, E.G., Kolesnikov, I.E., Avdontceva, M.S., Panikorovskii, T.L., Suslonov, V.V., and Haukka, M., Organometallics, 2019, vol. 38, p. 300. https://doi.org/10.1021/acs.organomet.8b00725

    Article  CAS  Google Scholar 

  84. Mikhaylov, V.N., Sorokoumov, V.N., Novikov, A.S., Melnik, M.V., Tskhovrebov, A.G., and Balova, I.A., J. Organomet. Chem., 2020, vol. 912, p. 121174. https://doi.org/10.1016/j.jorganchem.2020.121174

    Article  CAS  Google Scholar 

  85. Wu, W., Li, M., Zheng, J., Hu, W., Li, C., and Jiang, H., Chem. Commun., 2018, vol. 54, p. 6855. https://doi.org/10.1039/C8CC02028K

    Article  CAS  Google Scholar 

  86. Zheng, Q., Ding, Q., Wang, C., Chen, W., and Peng, Y., Tetrahedron, 2016, vol. 72, p. 952. https://doi.org/10.1016/j.tet.2015.12.060

    Article  CAS  Google Scholar 

  87. Mampuy, P., Neumann, H., Sergeyev, S., Orru, R.V.A., Jiao, H., Spannenberg, A., Maes, B.U.W., and Beller, M., ACS Catal., 2017, vol. 7, p. 5549. https://doi.org/10.1021/acscatal.7b01503

    Article  CAS  Google Scholar 

  88. Vlaar, T., Ruijter, E., Maes, B.U.W., and Orru, R.V.A., Angew. Chem., Int. Ed., 2013, vol. 52, p. 7084. https://doi.org/10.1002/anie.201300942

  89. Saluste, C.G., Whitby, R.J., and Furber, M., Angew. Chem. Int. Ed., 2000, vol. 39, p. 4156. https://doi.org/10.1002/1521-3773(20001117)39:22<4156::aid-anie4156>3.3.co;2-2

    Article  CAS  Google Scholar 

  90. Saluste, C.G., Whitby, R.J., and Furber, M., Tetrahedron Lett., 2001, vol. 42, p. 6191. https://doi.org/10.1016/s0040-4039(01)01201-1

    Article  CAS  Google Scholar 

  91. Zhou, F., Ding, K., and Cai, Q., Chem. Eur. J., 2011, vol. 17, p. 12268. https://doi.org/10.1002/chem.201102459

    Article  CAS  Google Scholar 

  92. Tobisu, M., Imoto, S., Ito, S., and Chatani, N., J. Org. Chem., 2010, vol. 75, p. 4835. https://doi.org/10.1021/jo1009728

    Article  CAS  Google Scholar 

  93. Liu, B., Li, Y., Yin, M., Wu, W., and Jiang, H., Chem. Commun., 2012, vol. 48, p. 11446. https://doi.org/10.1039/c2cc35802f

    Article  CAS  Google Scholar 

  94. Noskowska, M., Śliwińska, E., and Duczmal, W., Trans. Met. Chem., 2003, vol. 28, p. 756. https://doi.org/10.1023/a:1026064708867

    Article  CAS  Google Scholar 

  95. Kinzhalov, M.A., Zolotarev, A.A., and Boyarskiy, V.P., J. Struct. Chem., 2016, vol. 57, p. 822. https://doi.org/10.1134/s0022476616040302

    Article  CAS  Google Scholar 

  96. Sheldrick, G.M., Acta Crystallogr. А, 2008, vol. 64, p. 112. https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  97. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H., J. Appl. Cryst., 2009, vol. 42, p. 339. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  98. CrysAlisPro, A.T., Version 1.171.36.20 (release 27-06-2012).

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.V. Buldakov (St. Petersburg State University) for carrying out test experiments at the initial stage of work.

The work was carried out using the equipment of the resource centers “Magnetic resonance research methods", “X-ray diffraction methods of research,” “Methods of analysis of the composition of matter,” “Educational center in the field of chemistry,” and “Optical and laser methods of research of matter” of the Science Park of the St. Petersburg State university.

Funding

This work was supported by the Russian Science Foundation (project no. 19-13-00008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Kinzhalov.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilov, G.A., Kinzhalov, M.A. Isocyanide-Phosphine Complexes of Palladium(II) Dihalides: Synthesis, Structure, and Resistance to Ligand Disproportionation Reactions. Russ J Gen Chem 92, 2279–2289 (2022). https://doi.org/10.1134/S1070363222110123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222110123

Keywords:

Navigation