Skip to main content
Log in

Reactions of Tetramethyl Ethynyldiphosphonate with Substituted 2-Aminopyridines

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The base-catalyzed hydroamination reaction of teramethyl ethynyldiphosphonate with substituted 2-aminopyridines was studied. The reaction proceeds stereoselectively with the formation of (E)-enaminophosphonates. A series of new phosphonoenamines, namely dimethyl [2-(dimethoxyphosphoryl)-2-(pyridin-2-ylamino)vinyl]phosphonates, was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Quin, L.D., A Guide to Organophosphorus Chemistry, Toronto: John Wiley & Sons Inc., 2000.

  2. Gałęzowska, J. and Gumienna-Kontecka, E., Coord. Chem. Rev., 2012, vol. 256, no. 1–2, p. 105. https://doi.org/10.1016/j.ccr.2011.07.002

    Article  CAS  Google Scholar 

  3. Yücesan, G., Zorlu, Y., Stricker, M., and Beckmann, J., Coord. Chem. Rev., 2018, vol. 369, p. 105. https://doi.org/10.1016/j.ccr.2018.05.002

    Article  CAS  Google Scholar 

  4. Manghi, M.M., Masiol, M., Calzavara, R., Graziano, P.L., Peruzzi, E., and Pavoni, B., Chemosphere, 2021, vol. 283, p. 131187. https://doi.org/10.1016/j.chemosphere.2021.131187

    Article  CAS  Google Scholar 

  5. Cao, H.-Q., Li, J.-K., Zhang, F.-G., Cahard, D., and Ma, J.-A., Adv. Synth. Catal., 2021, vol. 363, no. 3, p. 688. https://doi.org/10.1002/adsc.202001345

    Article  CAS  Google Scholar 

  6. Maeda, K., Micropor. Mesopor. Mater., 2004, vol. 73, nos. 1–2, p. 47. https://doi.org/10.1016/j.micromeso.2003.10.018

    Article  CAS  Google Scholar 

  7. Krečmerová, M., Majer, P., Rais, R., and Slusher, B.S., Front. Chem., 2022. https://doi.org/10.3389/fchem.2022.889737

  8. Popov, K., Oshchepkov, M., Tkachenko, S., Sergienko, V., and Oshchepkov, A., J. Mol. Liq., 2022, vol. 351, p. 118619. https://doi.org/10.1016/j.molliq.2022.118619

    Article  CAS  Google Scholar 

  9. Ebetino, F.H., Sun, S., Cherian, P., Roshandel, S., Neighbors, J.D., Hu, E., Dunford, J.E., Sedghizadeh, P.P., McKenna, C.E., Srinivasan, V., Boeckman, R.K., and Russell, R.G., Bone, 2022, vol. 156, p. 116289. https://doi.org/10.1016/j.bone.2021.116289

    Article  CAS  Google Scholar 

  10. Zolotukhina, M.M., Krutikov, V.I., and Lavrent’ev, A.N., Russ. Chem. Rev., 1993, vol. 62, no. 7, p. 647. https://doi.org/10.1070/RC1993v062n07ABEH000038

    Article  Google Scholar 

  11. Russell, R.G., Bone, 2011, vol. 49, p. 2. https://doi.org/10.1016/j.bone.2011.04.022

    Article  CAS  Google Scholar 

  12. Ebetino, F.H., Hogan, A.M., Sun, S., Tsuompra, M.K., Duan, X., Triffitt, J.T., Kwaasi, A.A., Dunford, J.E., Barnett, B.L., Oppermann, U., Lundy, M.W., Boyde, A., Kashemirov, B.A., McKenna, C.E., and Russell, R.G., Bone, 2011, vol. 49, p. 20. https://doi.org/10.1016/j.bone.2011.03.774

    Article  CAS  Google Scholar 

  13. Maraka, S. and Kennel, K.A., Br. Med. J., 2015, vol. 351, p. h3783. https://doi.org/10.1136/bmj.h3783

  14. Kaboudin, B., Daliri, P., Faghih, S., and Esfandiari, H., Front. Chem., 2022. https://doi.org/10.3389/fchem.2022.890696

  15. Shi, C.G., Zhang, Y., and Yuan, W., Am. J. Ther., 2016, vol. 3, p. e894. https://doi.org/10.1097/MJT.0000000000000236

  16. Chmielewska, E. and Kafarski, P., Open Pharm. Sci. J., 2016, vol. 3, p. 56. https://doi.org/10.2174/1874844901603010056

    Article  Google Scholar 

  17. Demkowicz, S., Rachón, J., Daśko, M., and Kozak, W., RSC Adv., 2016, vol. 6, p. 7101. https://doi.org/10.1039/C5RA25446A

    Article  CAS  Google Scholar 

  18. Studnik, H., Liebsch, S., Forlani, G., Wieczorek, D., Kafarski, P., and Lipok, J., New Biotechnol., 2015, vol. 32, p. 1. https://doi.org/10.1016/j.nbt.2014.06.007

    Article  CAS  Google Scholar 

  19. Turhanen, P.A., Vepsäläinen, J.J., and Peräniemi, S., Sci. Rep., 2015, vol. 5, Article no. 8992.

  20. Chmielewska, E. and Kafarski, P., Molecules, 2016, vol. 21, no. 11, p. 1474. https://doi.org/10.3390/molecules21111474

    Article  CAS  Google Scholar 

  21. Chmielewska, E. and Kafarski, P., Molecules, 2012, vol. 17, no. 9, p. 10928. d https://doi.org/10.3390/molecules170910928

    Article  CAS  Google Scholar 

  22. Widler, L., Jaeggi, K.A., Glatt, M., Müller, K., Bachmann, R., Bisping, M., Born, A.-R., Cortesi, R., Guiglia, G., Jeker, H., Klein, R., Ramseier, U., Schmid, J., Schreiber, G., Seltenmeyer, Y., and Green, J.R., J. Med. Chem., 2002, vol. 45, no. 17, p. 3721. https://doi.org/10.1021/jm020819i

    Article  CAS  Google Scholar 

  23. Van Gelder, J.M., Breuer, E., Ornoy, A., Schlossman, A., Patlas, N., and Golomb, G., Bone, 1995, vol. 16, p. 511. https://doi.org/10.1016/8756-3282(95)00081-N

    Article  CAS  Google Scholar 

  24. Golomb, G., Schlossman, A., Saadeh, H., Levi, M., Van Gelder, J.M., and Breuer, E., Pharm. Res., 1992, vol. 9, p. 143. https://doi.org/10.1023/A:1018956516640

    Article  CAS  Google Scholar 

  25. Palacios, F., Ochoa de Retana, A.M., Pascual, S., López de Munain, R., Oyarzabal, J., and Ezpeleta, J.M., Tetrahedron, 2005, vol. 61, no. 5, p. 1087. https://doi.org/10.1016/j.tet.2004.11.061

    Article  CAS  Google Scholar 

  26. Palacios, F., Ochoa de Retana, A.M., and Oyarzabal, J., Tetrahedron, 1999, vol. 55, no. 18, p. 5947. https://doi.org/10.1016/S0040-4020(99)00257-4

    Article  CAS  Google Scholar 

  27. Palacios, F., Ochoa de Retana, A.M., and Oyarzabal, J., Tetrahedron, 1999, vol. 55, no. 10, p. 3091. https://doi.org/10.1016/S0040-4020(99)00068-X

    Article  CAS  Google Scholar 

  28. Zhang, Z., Tamura, K., Mayama, D., Sugiya, M., and Imamoto, T., J. Org. Chem., 2012, vol. 77, p. 4184. https://doi.org/10.1021/jo300454n

    Article  CAS  Google Scholar 

  29. Zhang, J., Li, Y., Wang, Z., and Ding, K., Angew. Chem. Int. Ed., 2011, vol. 50, p. 11743. https://doi.org/10.1002/ange.201104912

    Article  CAS  Google Scholar 

  30. Wassenaar, J., Kuil, M., Lutz, M., Spek, A.L., and Reek, J.N.H., Chem. Eur. J., 2010, vol. 16, p. 6509. https://doi.org/10.1002/chem.200903476

    Article  CAS  Google Scholar 

  31. Zhou, M., Xue, Z., Cao, M., Dong, X.-Q., and Zhang, X., Org. Biomol. Chem., 2016, vol. 14, no. 20, p. 4582. https://doi.org/10.1039/c6ob00540c

    Article  CAS  Google Scholar 

  32. Adler, P., Fadel, A., and Rabasso, N., Tetrahedron, 2014, vol. 70, no. 30, p. 4437. https://doi.org/10.1016/j.tet.2014.04.086

    Article  CAS  Google Scholar 

  33. Zhuravleva, P.A., Kolina, A.I., Svintsitskaya, N.I., and Dogadina, A.V., Russ. J. Gen. Chem., 2021, vol. 91, no. 10, p. 2031. https://doi.org/10.1134/S1070363221100169

    Article  CAS  Google Scholar 

  34. Krylov, A.S., Petrosian, A.A., Piterskaya, J.L., Svintsitskaya, N.I., and Dogadina, A.V., Beilstein J. Org. Chem., 2019, Vol. 15, p. 1563. https://doi.org/10.3762/bjoc.15.159

  35. Svintsitskaya, N.I., Dogadina, A.V., Starova, G.L., and Trifonov, R.E., Tetrahedron Lett., 2014, vol. 55, no. 39, p. 5381. https://doi.org/10.1016/j.tetlet.2014.08.018

    Article  CAS  Google Scholar 

  36. Whitesell, M.A. and Kyba, E.P., Tetrahedron Lett., 1983, vol. 24, no. 16, p. 1679. https://doi.org/10.1016/S0040-4039(00)81743-8

    Article  CAS  Google Scholar 

  37. Whitesell, J.K. and Whitesell, M.A., Synthesis, 1983, no. 7, p. 517. https://doi.org/10.1055/s-1983-30409

    Article  Google Scholar 

  38. Berry, J.F. and Roy, M., Compr. Coord. Chem. III, 2021, p. 406. https://doi.org/10.1016/B978-0-08-102688-5.00075-1

  39. Rao, R.N. and Chanda, K., Chem. Commun., 2022, vol. 58, no. 3, p. 343. https://doi.org/10.1039/D1CC04602K

    Article  CAS  Google Scholar 

  40. Shekhade, A., Didkovskii, N.G., Dogadina, A.V., and Ionin, B.I., Russ. J. Gen. Chem., 2004, vol. 74, no. 10, p. 1627. https://doi.org/10.1007/s11176-005-0071-y

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.V. Dogadina (St. Petersburg State Technological Institute (Technical University)) for providing ethynyldiphosphonic acid tetramethyl ester.

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 0785.00.X6019) using the equipment of the Engineering Center of the St. Petersburg State Institute of Technology (Technical University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Svintsitskaya.

Ethics declarations

N.I. Svintsitskaya is a member of the Editorial Board of the Journal of General Chemistry. The other authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dakuo, K.N., Krylov, A.S. & Svintsitskaya, N.I. Reactions of Tetramethyl Ethynyldiphosphonate with Substituted 2-Aminopyridines. Russ J Gen Chem 92, 2267–2272 (2022). https://doi.org/10.1134/S107036322211010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107036322211010X

Keywords:

Navigation