Skip to main content
Log in

Photochemical Synthesis and Catalytic Properties of Materials Containing Cerium(IV) Oxide and Gold Nanoparticles

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Gold nanoparticles on the surface of cerium(IV) oxide were obtained by photochemical reduction of HAuCl4 in water–alcohol solutions. The spectral characteristics of the resultant nanocomposites, their phase composition and morphology, and the kinetics of the gold particles formation were examined depending on the nature of the monohydric alcohol and on the morphology of the cerium(IV) oxide particles. The catalytic activity of cerium(IV) oxide before and after modification with gold nanoparticles in the reactions of photodegradation of methyl orange and phenol was studied. It was shown that the CeO2 particles modified with gold nanoparticles upon irradiation with UV light have the highest photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Ivanov, V.K., Shcherbakov, A.B., Baranchikov, A.E., and Kozik, V.V., Nanokristallicheskii dioksid tseriya: svoistva, poluchenie, primenenie (Nanocrystalline Cerium Dioxide: Properties, Preparation, and Application), Tomsk: Tomsk. Univ., 2013.

  2. Montini, T., Melchionna, M., Monai, M., and Fornasiero, P., Chem. Rev., 2016, vol. 116, no. 10, p. 5987. https://doi.org/10.1021/acs.chemrev.5b00603

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, M., Li, J., Li, H., Li, Y., and Shen, W., Catal. Today, 2009, vol. 148, nos. 1–2, p. 179. https://doi.org/10.1016/j.cattod.2009.02.016

    Article  CAS  Google Scholar 

  4. Trovarelli, A., Catal. Rev., 1996, vol. 38, no. 4, p. 439. https://doi.org/10.1080/01614949608006464

    Article  CAS  Google Scholar 

  5. Tereshchenko, A.A., Polyakov, V.A., Guda, A.A., Bulgakov, A.N., Tarasov, A.L., Kustov, L.M., and Soldatov, A.V., Poverkhn. Rentgen. Sinkhrotron. Neitron. Issled., 2020, no. 5, p. 17. https://doi.org/10.31857/S1028096020050180

    Article  Google Scholar 

  6. Grabchenko, M.V., Mamontov, G.V., Vodyankina, O.V., and Zaikovskii, V.I., Kinet. Catal., 2017, vol. 58, no. 5, p. 642. https://doi.org/10.7868/S0453881117050069

    Article  CAS  Google Scholar 

  7. Wang, Z., Huang, Z., Brosnahan, J.T., Zhang, S., Guo, Y., Guo, Y., and Zhan, W., Environ. Sci. Technol., 2019, vol. 53, no. 9, p. 5349. https://doi.org/10.1021/acs.est.9b01929

    Article  CAS  PubMed  Google Scholar 

  8. Tan, H., Wang, J., Yu, S., and Zhou, K., Environ. Sci. Technol., 2015, vol. 49, no. 14, p. 8675. https://doi.org/10.1021/acs.est.5b01264

    Article  CAS  PubMed  Google Scholar 

  9. Isaeva, E.I., Gorbunova, V.V., and Nazarova, A.M., Russ. J. Gen. Chem., 2020, vol. 90, no. 12, p. 2296. https://doi.org/10.31857/S0044460X20120124

    Article  CAS  Google Scholar 

  10. Asadullah, M., Fujimoto, K., and Tomishige, K., Ind. Eng. Chem. Res., 2001, vol. 40, no. 25, p. 5894. https://doi.org/10.1021/ie010160z

    Article  CAS  Google Scholar 

  11. Satsuma, A., Yanagihara, M., Ohyama, J., and Shimizu, K., Catal. Today, 2013, vol. 201, p. 62. https://doi.org/10.1016/j.cattod.2012.03.048

    Article  CAS  Google Scholar 

  12. Peng, R., Li, S., Sun, X., Ren, Q., Chen, L., Fu, M., Wu, J., and Ye, D., Appl. Catal. B, 2018, vol. 220, p. 462. https://doi.org/10.1016/j.apcatb.2017.07.048

    Article  CAS  Google Scholar 

  13. Potemkin, D.I., Snytnikov, P.V., Semitut, E.Yu., Plyusnin, P.E., Shubin, Yu.V., and Sobyanin, V.A., Catal. Ind., 2014, vol. 6, no. 1, p. 36. https://doi.org/10.1134/S2070050414010073

    Article  Google Scholar 

  14. Moreno, I., Navascues, N., Irusta, S., and Santamaria, J., J. Catal., 2015, vol. 329, p. 479. https://doi.org/10.1016/j.jcat.2015.06.011

    Article  CAS  Google Scholar 

  15. Abdel-Mageed, A.M., Kučerová, G., El-Moemen, A.A., Bansmann, J., Widmann, D., and Behm, R.J., J. Phys. Conf. Ser., 2016, vol. 712, no. 1, p. 012044. https://doi.org/10.1088/1742-6596/712/1/012044

    Article  CAS  Google Scholar 

  16. Ren, Y., Tang, K., Wie, J., Yang, H., Wie, H., and Yang, Y., Energy Technol., 2018, vol. 6, no. 2, p. 379. https://doi.org/10.1002/ente.201700511

    Article  CAS  Google Scholar 

  17. Centeno, M.A., Ramírez Reina, T., Ivanov, S., Laguna, O.H., and Odriozola, J.A., Catalysts, 2016, vol. 6, no. 10, p. 158

    Article  Google Scholar 

  18. Wei, Y., Zhang, Y., Zhang, P., Xiong, J., Mei, X., Yu, Q., and Liu, J., Environ. Sci. Technol., 2019, vol. 54, no. 3, p. 2002. https://doi.org/10.1021/acs.est.9b07013

    Article  CAS  Google Scholar 

  19. Li, H.F., Zhang, N., Chen, P., Luo, M.F., and Lu, J.Q., Appl. Catal. B, 2011, vol. 110, p. 279. https://doi.org/10.1016/j.apcatb.2011.09.013

    Article  CAS  Google Scholar 

  20. Bu, Y., Chen, Y., Jiang, G., Hou, X., Li, S., and Zhang, Z., Appl. Catal. B, 2020, vol. 260, no. 118, article ID 118138. https://doi.org/10.1016/j.apcatb.2019.118138

  21. Lakshmanan, P., Upare, P.P., Le, N.T., Hwang, Y.K., Hwang, D.W., Lee, U.H., and Chang, J.S., Appl. Catal. A, 2013, vol. 468, p. 260. https://doi.org/10.1016/j.apcata.2013.08.048

    Article  CAS  Google Scholar 

  22. Sheng, P.Y., Bowmaker, G.A., and Idriss, H., Appl. Catal. A, 2004, vol. 261, no. 2, p. 171. https://doi.org/10.1016/j.apcata.2003.10.046

    Article  CAS  Google Scholar 

  23. Eryomin, A.N., Abakshonok, A.V., Agabekov, V.E., and Kvasyuk, A.A., Russ. J. Gen. Chem., 2017, vol. 87, no. 10, p. 2358. https://doi.org/10.1134/S1070363217100176

    Article  CAS  Google Scholar 

  24. Zholobak, N.M., Ivanov, V.K., Shcherbakov, A.B., Shaporev, A.S., Polezhaeva, O.S., Baranchikov, A.Ye., Spivak, N.Ya., and Tretyakov, Yu.D., J. Photochem. Photobiol. B, 2011, vol. 102, p. 32. https://doi.org/10.1016/j.jphotobiol.2010.09.002

    Article  CAS  PubMed  Google Scholar 

  25. Volkov, А.А., Boitsova, T.B., Stozharov, V.M., and Isaeva, E.I., Russ. J. Gen. Chem., 2020, vol. 90, no. 2, p. 277. https://doi.org/10.31857/S0044460X20020183

    Article  CAS  Google Scholar 

  26. Li, B., Zhang, B., Nie, S., Shao, L., and Hu, L., J. Catal., 2017, vol. 348, p. 256.

    Article  CAS  Google Scholar 

  27. García-López, E.I., Abbasi, Z., Parrino, F., La Parola, V., Liotta, L.F., and Marcì, G., Catalysts, 2021, vol. 11, no. 12, p. 1467. https://doi.org/10.3390/catal11121467

    Article  CAS  Google Scholar 

  28. Zhou, J., Xu, L., Sun, J., He, D., and Jiao, H., Surf. Coat. Technol., 2015, vol. 271, p. 119. https://doi.org/10.1016/j.surfcoat.2014.12.069

    Article  CAS  Google Scholar 

  29. Sudarsanam, P., Mallesham, B., Durgasri, D.N., and Reddy, B.M., J. Ind. Eng. Chem., 2014, vol. 20, no. 5, p. 3115. https://doi.org/10.1016/j.jiec.2013.11.053

    Article  CAS  Google Scholar 

  30. Lei, W., Zhang, T., Gu, L., Liu, P., Rodriguez, J.A., Liu, G., and Liu, M., ACS Catal., 2015, vol. 5, no. 7, p. 4385. https://doi.org/10.1021/acscatal.5b00620

    Article  CAS  Google Scholar 

  31. Vakhrushev, A.Y., Krainov, D.S., Boitsova, T.B., Gorbunova, V.V., and Pak, V.N., Russ. J. Appl. Chem., 2020, vol. 93, no. 2, p. 274. https://doi.org/10.31857/S0044461820020176

    Article  CAS  Google Scholar 

  32. Saoud, K.M. and El-Shall, M.S., Catalysts, 2020, vol. 10, no. 11, p. 1351. https://doi.org/10.3390/catal10111351

    Article  CAS  Google Scholar 

  33. Eaimsumang, S., Wongkasemjit, S., Pongstabodee, S., Smith, S.M., Ratanawilai, S., Chollacoop, N., and Luengnaruemitchai, A., J. Rare Earths, 2019, vol. 37, no. 8, p. 819. https://doi.org/10.1016/j.jre.2018.11.010

    Article  CAS  Google Scholar 

  34. Huang, P.X., Wu, F., Zhu, B.L., Gao, X.P., Zhu, H.Y., Yan, T.Y., Huang, W.P., Wu, S.H., and Song, D.Y., J. Phys. Chem. B, 2005, vol. 109, no. 41, p. 19169. https://doi.org/10.1021/jp052978u

    Article  CAS  PubMed  Google Scholar 

  35. Qi, J., Chen, J., Li, G., Li, S., Gao, Y., and Tang, Z., Energy Environ. Sci., 2012, vol. 5, no. 10, p. 8937. https://doi.org/10.1039/C2EE22600F

    Article  CAS  Google Scholar 

  36. Abdelrahim, M.Y.M., Benjamin, S.R., CubillanaAguilera, L.M., Naranjo-Rodríguez, I., HidalgoHidalgo de Cisneros, J.L., Delgado, J.J., and PalaciosSantander, J.M., Sensors, 2013, vol. 13, no. 4, p. 4979. https://doi.org/10.3390/s130404979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Langford, J.I. and Wilson, A.J.C., J. Appl. Cryst., 1978, vol. 11, p. 102. https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Physicochemical studies were carried out using the equipment of the Center for Collective Use, Department of Chemistry, Gertsen Russian State Pedagogical University, as well as of the equipment of the Composition, Structure, and Properties of Structural and Functional Materials, Center for Collective Use of Scientific Equipment, Gorynin Central Research Institute of Structural Materials “Prometei,” National Research Center “Kurchatov Institute”.

Funding

This study was financially supported by the Ministry of Science and Higher Education of the Russian Federation [project no. 13.TsKP.21.0014 (075-11-2021-068), unique identifier RF 2296.61321X0014].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Isaeva.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaeva, E.I., Gur’ev, N.V., Boitsova, T.B. et al. Photochemical Synthesis and Catalytic Properties of Materials Containing Cerium(IV) Oxide and Gold Nanoparticles. Russ J Gen Chem 92, 1972–1982 (2022). https://doi.org/10.1134/S1070363222100115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222100115

Keywords:

Navigation