Skip to main content
Log in

Design, Synthesis, and Biological Evaluation of Fluoroquinolones Linked to 4-Thiazolidinone Moieties as Potent Antimicrobial Agents: Docking Analysis

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A series of novel fluoroquinolone thiazolidinone derivatives were synthesized and evaluated for their biological activity. All the newly synthesized compounds were characterized by IR, 1H NMR, 13C NMR, mass spectral techniques, and elemental analysis. Our results reveal that compounds 6a6j have considerable activity against Gram–positive microorganisms with MICs range 0.65–64.2 μg/mL and Gram–negative strains belongs to MICs range 3.1–84.7 μg/mL respectively. From screening antibacterial results 6f, 6g, and 6d showed outstanding antibacterial activity against S. aureus with MICs 0.65, 2.2 and 4.7 µg/mL respectively whereas 6f, 6e, 6c have good potency in inhibiting the growth of P. aeruginosa including zone of inhibition 33, 32, 30 mm. The most active ligand 6d reveals highest hydrophobic binding modes with IleA:97 [2.189 Å], IleA:126 [2.199 Å], carbon hydrogen and halogen bondings with ProA:214, GluA:96, AsnA:91, Π–Π, and Π-alkyl interaction PheA:474 [2.903 Å] respectively. Compounds 6b, 6d, 6g possesses highest drug likeness model score 1.52, 1.25, 1.22, and considering their bioactivity potentials, perhaps highly substitute thiazolidinone functionalized fluoroquinolones could be the future antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Wohlkonig, A., Chan, P.F., Fosberry, A.P., Homes, P., Huang, J., Kranz, M., Leydon, V.R., Miles, T.J., Pearson, N.D., Perera, R.L., Shillings, A.J., Gwynn, M.N., and Bax, B.D., Nat. Struct. Mol. Biol., 2010, vol. 17, p. 1152. https://doi.org/10.1038/nsmb.1892

    Article  CAS  PubMed  Google Scholar 

  2. Mustaev, A., Malik, M., Zhao, X., Kurepina, N., Luan, G., Oppegard, L.M., Hiasa, H., Marks, K.R., Kerns, R.J., Berger, J.M., and Drlica, K., J. Biol. Chem., 2014, vol. 289, p. 12300. https://doi.org/10.1074/jbc.M113.529164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Malik, M., Mustaev, A., Schwanz, H.A., Luan, G., Shah, N., Oppegard, L.M., de Souza, E.C., Hiasa, H., Zhao, X., Kerns, R.J., and Drlica, K., Nucleic Acids Res., 2016, vol. 44, p. 3304. https://doi.org/10.1093/nar/gkw161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Joanna, F., and Jarosław, S., Monatsh Chem., 2018, vol. 149, p. 1199. https://doi.org/10.1016/j.ejmech.2019.06.071

  5. Abuo-Rahma, G.D., Sarhan, H.A., and Gad, G.F., Bioorg. Med. Chem., 2009, vol. 17, p. 3879. https://doi.org/10.1016/j.bmc.2009.04.027

    Article  CAS  Google Scholar 

  6. Foroumadi, A., Ghodsi, S., Emami, S., Najjari, S., Samadi, N., and Faramarzi, M.A., Bioorg. Med. Chem. Lett., 2006, vol. 16, p. 3499. https://doi.org/10.1016/j.bmcl.2006.03.103

  7. Sriram, D., Aubry, A., Yogeeswari, P., and Fisher, L.M., Bioorg. Med. Chem. Lett., 2006, vol. 16, p. 2982. https://doi.org/10.1016/j.bmcl.2006.02.065

  8. Rameshkumar, N., Ashokkumar, M., Subramanian, E.H., Ilavarasan, R., and Sridhar, S.K., Eur. J. Med. Chem., 2003, vol. 38, p. 1001. https://doi.org/10.1016/S0223-5234(03)00151-X

    Article  CAS  PubMed  Google Scholar 

  9. Akhtar, R., Noreen, R., Raza, Z., Rasul, A., and Zahoor, A.F., Russ. J. Org. Chem., 2022, vol. 58, p. 541. https://doi.org/10.1134/S107042802204011X

  10. Arshad, M., Mohd Shoeb, K., and Shahab, A.A.N., Russ. J. Bioorg. Chem., 2021, vol. 47, p. 483. https://doi.org/10.1134/S1068162021020047

    Article  CAS  Google Scholar 

  11. Patitungkho, S., Adsule, S., Dandawate, P., Padhye, S., Ahmad, A., and Sarkar, F.H., Bioorg. Med. Chem. Lett., 2011, vol. 21, p. 1802. https://doi.org/10.1016/j.bmcl.2011.01.061

    Article  CAS  PubMed  Google Scholar 

  12. Tejeswara Rao, A., Naresh Kumar, K., Venkanna, B., Srinubabu, M., Pal, M., and Jaya Shree, A., Lett. Drug Design Discove., 2018, vol. 15, p. 1087. https://doi.org/10.2174/1570180815666171229150032

    Article  CAS  Google Scholar 

  13. Kini, D. and Ghate, M., Eur. J. Chem., 2011, vol. 8, p. 386.

  14. Vazzana, I., Terranova, E., Mattioli, F., and Sparatore, F., Arkivoc, 2004, p. 364-374.

  15. Tsyalkovsky, V.M., Kutsyk, R.V., Matiychuk, V.S., Obushak, N.D., and Klyufinskaya, T.I., Pharm. Chem. J., 2005, vol. 39, p. 245. https://doi.org/10.1007/s11094-005-0126-8

    Article  CAS  Google Scholar 

  16. Terzioglu, N., Karali, N., Gursoy, A., Pannecouque, C., Leysen, P., Paeshuyse, J., Neyts, J., and De Clercq, E., Arkivoc, 2006, p. 109.

  17. Ulusoy, N., Kiraz, M., Kucukbasmacl, O., and Monatshefte. Fur Chemie., 2002, vol. 133, p. 1305. https://doi.org/10.1007/s007060200108

    Article  CAS  Google Scholar 

  18. Ali, M.M. and Hassan, S.A., Int. J. Cancer Res., 2007, vol. 3, p. 103.

    Article  CAS  Google Scholar 

  19. Faidallah, H.M., Al-Saadi, M.S., Rostom, S.A.F., and Fahmy, H.T., Med. Chem. Res., 2007, vol. 16, p. 300. https://doi.org/10.1007/s00044-007-9033-8

    Article  CAS  Google Scholar 

  20. Sriram, D., Yogeeswari, P., Senchani, G., and Banerjee, D., Bioorg Med Chem Lett., 2007, vol. 17, p. 2372. https://doi.org/10.1016/j.bmcl.2006.11.055

    Article  CAS  PubMed  Google Scholar 

  21. Raikwar, D.K., Srivastava, S.K., and Srivastava, S.D., J. Indian. Chem. Soc., 2008, vol. 85, p. 78.

  22. Ravichandran, V., Mourya, V.K., Agrawal, R.K., Vishwadivyalala, H.S.G., and Digest, J., Nanomaterials Biostruct., 2008, vol. 3, p. 19.

    Google Scholar 

  23. Miller, M.J., Ji, C., and Miller, P.A., ACS Med. Chem. Lett., 2015, vol. 6, p. 707.

    Article  Google Scholar 

  24. Vigorita, M.G., Ottana, R., Monforte, F., Maccari, R., Trovato, A., Monforte, M.T., and Taviano, M.F., Bioorg. Med. Chem. Lett., 2001, vol. 11, p. 2791. https://doi.org/10.1016/j.bmcl.2006.11.055

  25. Sharma, P.C. and Jain, S., Acta Pol. Pharm., 2008, vol. 65, p. 551.

  26. Shah, D.R., Lakum, H.P., and Chikhalia, K.H., Russ. J. Bioorg. Chem., 2015, vol. 41, p. 209.

    Article  CAS  Google Scholar 

  27. Angelova, V.T., Pencheva, T., Buyukliev, R., Yovkova, E.K., Valkova, I., Momekov, G., and Vulcheva, V., Russ. J. Bioorg. Chem., 2021, vol. 47, p.122.

    Article  CAS  Google Scholar 

  28. Srinivas, A., Nagaraj, A., and Sanjeeva Reddy, Ch., J. Heterocycl. Chem., 2008, vol. 45, p. 999. https://doi.org/10.1002/jhet.5570450409

    Article  CAS  Google Scholar 

  29. Proudfoot, J.R., Bioorg. Med. Chem. Lett., 2002, vol. 12, p. 1647. https://doi.org/10.1016/S0960-894X(02)00244-5

    Article  CAS  PubMed  Google Scholar 

  30. Sahin, F., Karaman, I., Gulluce, M., Ogutcu, H., Xengul, M.S., Adıguzel, A., Ozturk, S., and Kotan, R., J. Ethnopharmacol., 2002, vol. 87, p. 61. https://doi.org/10.1016/S0378-8741(03)00110-7

    Article  Google Scholar 

  31. Gulluce, M., Adıguzel, A., Ogutcu, H., Sengul, M., and Sahin, F., Phytother. Res., 2004, vol. 18, p. 208.

  32. ACD/ChemSketch, version 2020.2.1, Advanced Chemistry Development, Inc., Toronto, ON, Canada, 2021. https://doi.org/10.1021/acschembio.1c00433

  33. O’Boyle, N.M., Banck, M., and James, C.A., J. Cheminform., 2011, vol. 3, p. 33. https://doi.org/10.1186/1758-2946-3-33

  34. Laponogov, I., Pan, X.S., Veselkov, D.A., Cirz, R.T., Wagman, A., Moser, H.E., Fisher, L.M., and Sanderson, M.R., Open Biol., 2016, vol. 6, p. 160157. https://doi.org/10.1098/rsob.160157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., and Olson, A.J., J Comput. Chem., 2009, vol. 16, p. 2785. https://doi.org/10.1002/jcc.21256

  36. Tejeswara Rao, A., Bhaskar, K., Naveen, P., Naveen, K., Kalyani, Ch., and Jaya Shree, A., Mol. Divers., 2022, vol. 26, p. 1581. https://doi.org/10.1007/s11030-021-10287-3

  37. Zhao, Y., Abraham, M.H., Lee, J.A. Hersey, A., Luscombe, Ch.N., Beck, G., Sherborne, B., and Cooper, I., Pharm. Res., 2002, vol. 19, p. 1446. https://doi.org/10.1023/A:1020444330011

    Article  CAS  PubMed  Google Scholar 

  38. Ertl, P., Rohde, B., and Selzer, P., J. Med. Chem., 2000, vol. 43, p. 3714. https://doi.org/10.1021/jm000942e

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

One of the authors (GSR) is thankful to Koneru Lakshmaiah Education Foundation for providing the required facilities and motivation for completion of the research work and special thanks to Dr. Saikrishna Balabadra, Assistant Professor, and the HOD, Dr. P. Venkat Reddy, SNIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganji Sreekanth Reddy.

Ethics declarations

No conflict of interest was declared by the authors.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, G.S., Rao, A.V., Keshavulu, M. et al. Design, Synthesis, and Biological Evaluation of Fluoroquinolones Linked to 4-Thiazolidinone Moieties as Potent Antimicrobial Agents: Docking Analysis. Russ J Gen Chem 92, 1749–1760 (2022). https://doi.org/10.1134/S1070363222090171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222090171

Keywords:

Navigation