Skip to main content
Log in

Preparation of WO3 Films on Titanium and Graphite Foil for Fuel Cell and Supercapacitor Applications by Electrochemical (Cathodic) Deposition Method

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Numerous electrochemical and chemical methods are suitable for preparation of tungsten trioxide (WO3) films. Many of these methods, however, have not been carefully studied, so information on the specific features of the WO3 film deposition technology is lacking. This paper describes the preparation of WO3 films by cathodic electrodeposition from the synthesized solution of peroxotungstic acid (PTA) on the surface of thermally expanded graphite (TEG) and titanium electrodes designed as foils. A stepwise pattern of reduction of tungsten oxides from PTA was revealed. The suitability of the WO3 film electrode as a material for electrochemical power industry was experimentally demonstrated. Specifically, WO3/Ti was found to be applicable as a protective coating for hydrogen fuel cells, and WO3/TEG, as a cathode material for asymmetric supercapacitors. Based on the charge-discharge curves for the WO3/TEG electrode used as a cathode in the free volume of th KOH electrolyte, the specific capacitance of the supercapacitor was estimated at 630 F/g. Electrochemical analysis showed that that WO3 films deposited on the titanium surface afford enhancement of the hydrogen overpotential and protection against pitting corrosion during potentiostatic polarization tests at the cathode potential of a fuel cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Granqvist, C.G., Handbook of Inorganic Materials, Amsterdam: Elsevier Science, 1995.

  2. Corr, D., Bach, U., Fay, D., Kinsella, M., McAtemney, C., O’Reilly, F., Rao, S.N., and Stobie, N., Solid State Ionics, 2003, vol. 165, pp. 315–321. https://doi.org/10.1016/j.ssi.2003.08.054

    Article  CAS  Google Scholar 

  3. Pieretti, J.C., Trevisan, T.B., Moraes, M.M.M., Souza, E.A., and Domingues, S.H., Appl. Nanosci., 2020, vol. 10, pp. 165–175. https://doi.org/10.1007/s13204-019-01089-z

    Article  CAS  Google Scholar 

  4. Mohan, L., Avani, A.V., Kathirvel, P., Marnadu, R., Packiaraj, R., Joshua, J.R., Nallamuthu, N., Shkir, M., and Saravanakumar, S., J. Alloys Compd., 2021, vol. 882, Art. 160670. https://doi.org/10.1016/j.jallcom.2021.160670

  5. Lokhande, V., Lokhande, A., Namkoong, G., Kim, J.H., and Ji, T., Results Phys., 2019, vol. 12, pp. 2012–2020. https://doi.org/10.1016/j.rinp.2019.02.012

    Article  Google Scholar 

  6. Ramana, C.V., Utsunomiya, S., Ewing, R.C., Julien, C.M., and Becker, U., J. Phys. Chem. B, 2006, vol. 110, pp. 10430–10435.

    Article  CAS  Google Scholar 

  7. Tilley, R.J.D., Int. J. Refract. Met. Hard Mater., 1995, vol. 13, pp. 93–109.

    Article  CAS  Google Scholar 

  8. Khyzhun, O.Y. and Solonin, Y.M., J. Phys.: Conf. Ser., 2007, vol. 61, pp. 534–539. https://doi.org/10.1088/1742-6596/61/1/108

    Article  CAS  Google Scholar 

  9. Krasnov, Yu.S., Kolbasov, G.Ya., and Volkov, S.V., Nanosyst., Nanomater., Nanotechnol., 2008, vol. 6, pp. 845–853.

    CAS  Google Scholar 

  10. Kelly, P. and Bradley, J., J. Optoelectron. Adv. Mater., 2009, vol. 11, pp. 1101–1107.

    CAS  Google Scholar 

  11. Zhi, M., Shi, Q., Wang, M., and Wang, Q., RSC Adv., 2016, vol. 6, pp. 67488–67494. https://doi.org/10.1039/C6RA13947G

    Article  CAS  Google Scholar 

  12. Park, S., Quan, Y.J., Kim, S., Kim, H., Kim, S., Chun, D.-M., Lee, C.S., Taya, M., Chu, W.-S., and Ahn, S.-H., Int. J. Precis. Eng. Manuf.-Green Technol., 2016, vol. 3, pp. 397–421. https://doi.org/10.1007/s40684-016-0049-8

    Article  Google Scholar 

  13. Mineo, G., Ruffino, F., Mirabella, S., and Bruno, E., Nanomaterials, 2020, vol. 10, pp. 1–12.

    Article  Google Scholar 

  14. Kumar, A., Prajapati, C.S., and Sahay, P.P., J. Sol-Gel Sci. Technol., 2019, vol. 90, no. 2, pp. 281–295.

    Article  CAS  Google Scholar 

  15. Shiyanovskaya, I., Hepel, M., and Tewksburry, E., J. New Mater. Electrochem. Syst., 2000, vol. 3, pp. 241–247.

    CAS  Google Scholar 

  16. Pauporte, T., J. Electrochem. Soc., 2002, vol. 149, no. 11, pp. 539–545.

    Article  Google Scholar 

  17. Poongodi, S., Kumar, P.S., Mangalaraj, D., Ponpandian, N., Meena, P., Masuda, Y., and Lee, C., J. Alloys Compd., 2017, vol. 719, pp. 71–81.

    Article  CAS  Google Scholar 

  18. More, A.J., Patil, R.S., Dalavi, D.S., Mali, S.S., Hong, C.K., Gang, M.G., Kim, J.H., and Patil, P.S., Mater. Lett., 2014, vol. 134, pp. 298–301.

    Article  CAS  Google Scholar 

  19. Vijayakumar, E., Yun, Y.-H., Quy, Vu.H.V., Lee, Y.-H., Kang, S.-H., Ahn, K.-S., and Lee, S.W., J. Electrochem. Soc., 2019, vol. 166(4), pp. 86–92.

    Article  Google Scholar 

  20. Santos, L., Neto, J.P., Crespo, A., Baiao, P., Barquinha, P., Pereira, L., Martins, R., and Fortunato, E., in Electroplating of Nanostructures, Aliofkhazraei, M., Ed., InTech: London, 2015, pp. 27–47.

  21. Bhosale, N.Y. and Kadam, A.V., Int. J. Eng. Technol., 2017, vol. 10, pp. 573–577.

    Google Scholar 

  22. Kwong, W.L., Savvides, N., and Sorrell, C.C., Electrochim. Acta, 2012, vol. 75, pp. 371–380.

    Article  CAS  Google Scholar 

  23. Meulenkamp, E.A., J. Electrochem. Soc., 1997, vol. 144, no. 5, pp. 1664–1671.

    Article  CAS  Google Scholar 

  24. Kwong, W.L., Qui, H., Nakaruk, A., Koshy, P., and Sorrell, C.C., Energy Procedia, 2013, vol. 4, pp. 617–626.

    Article  Google Scholar 

  25. Shchegolkov, А. and Shchegolkov, А., Perspekt. Mater., 2020, no. 1, pp. 54–63.

    Article  Google Scholar 

  26. Ho, W.-Y., Pan, H.-J., Chang, C.-L., and Wang, D.-Y., J. Surf. Coat. Technol., 2007, vol. 202, pp. 1297–1301.

    Article  CAS  Google Scholar 

  27. Pauporte, Т., Electrochem. Soc. Proc., 2003, vol. 17, pp. 18–27.

    Google Scholar 

  28. Shchegolkov, A.V., Galunin, E.V., Shchegolkov, A.V., Zyablova, A.M., Memetov, N.R., and Korotkov, S.V., Adv. Mater. Technol., 2016, no. 3, pp. 53–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Al. V. Shchegolkov, M. S. Lipkin or A. V. Shchegolkov.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchegolkov, A.V., Lipkin, M.S. & Shchegolkov, A.V. Preparation of WO3 Films on Titanium and Graphite Foil for Fuel Cell and Supercapacitor Applications by Electrochemical (Cathodic) Deposition Method. Russ J Gen Chem 92, 1161–1167 (2022). https://doi.org/10.1134/S1070363222060317

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222060317

Keywords:

Navigation