Skip to main content
Log in

X-Ray Contrast Magnetic Diagnostic Tool Based on a Three-Component Nanosystem

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Currently, improving the methods of early diagnosis of oncological diseases is an urgent task. With the development of science, there are more and more ways to solve it. The most important at the moment are the methods of magnetic resonance imaging and computed tomography, which allow you to visualize neoplasms less than 1 cm in size. To increase the effectiveness of these methods, X-ray contrast and magnetic resonance contrast agents are used to more accurately visualize and identify various neoplasms, so the development of new X-ray contrast and magnetic resonance contrast agents is a very important direction. The purpose of this work was to develop a X-ray contrast magnetic diagnostic tool based on a three-component Fe3O4–Au–SiO2 nanosystem. With the help of neural network modeling, the synthesis process of the Fe3O4–Au–SiO2 nanosystem was optimized. Optimal conditions for the synthesis of a three-component nanosystem with a diameter of less than 150 nm: V(Fe3O4) = 0.0012–0.0015 mol, V(HAuCl4) = 25–35 cm3, C(Na3C6H5O7∙5.5H2O) = 0.08–0.011 mol/dm3. Based on the results of X-ray phase analysis, it was found that the optimized sample of the three-component nanosystem contains crystalline phases of double iron oxide (Fe3O4), gold (Au) and an amorphous phase of silicon dioxide (SiO2). The results of IR spectroscopy confirmed the formation of a three-component system Fe3O4–Au–SiO2. The results of the X-ray density study showed that different layers of the three-component Fe3O4–Au–SiO2 nanosystem have different X-ray densities: a nucleus consisting of Fe3O4 nanoparticles has an X-ray density from 3000 to 4000 HU depending on the size of the nucleus; the layer formed by Au nanoparticles have an X-ray density of 9 000 to 10 000 HU depending on the size of the layer; the silica layer has an X-ray density of 100 HU to 950 HU. The research of the magnetic properties allowed us to establish a nonlinear decrease in the saturation magnetization from 0.17 to 0.01 kA/m, and the magnetic susceptibility from 0.0026 rel. units to 0.0002 rel. units when the ratio of the components of the Fe3O4–Au–SiO2 nanosystem changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Kaprin, A.D., Starinsky, V.V., and Petrova, G.V., The Sate of Cancer Care for the Population of Russia in 2016, 2017, p. 236.

  2. Kaprin, A.D., Starinsky, V.V., and Petrova, G.V., The Sate of Cancer Care for the Population of Russia in 2017, 2018, p. 236. https://doi.org/10.17116/onkolog2019801132

  3. Przhedetskaya, N.V. and Przhedetsky, Y.V., Bull. Rostov State University of Economics, 2020, no. 1(69), pp. 51–55.

    Google Scholar 

  4. Vikulova, Y.V., Radiat. Diagnost. Therapy, 2012, no. 2(3), pp. 40–43.

    Google Scholar 

  5. Androsyuk, K.L. and Plavskaya, O.K., Prognostic Value of Primary Tumor Visualization during Radiation Therapy of Laryngeal Cancer, 2013, pp. 18–19.

  6. Morris, E.D., Ghanem, A.I., Pantelic, M.V., Walker, E.M., Han, X., and Glide-Hurst, C.K., Int. J. Radiat. Oncol. Biol. Physics, 2019, vol. 103, no. 4, pp. 985–993.

    Article  Google Scholar 

  7. Krylova, A.I., Sotnikova, E.A., and Golbits, A.B., Pediatrician, 2016, vol. 7, no. 1. https://doi.org/10.17816/PED71111-119

  8. Kit, O.I., Zakharova, N.P., Salatov, R.N., Ausheva, T.V., and Andreiko, E.A., A Method for Diagnosing Soft Tissue Tumors, 2012, no. 2465825.

  9. Hu, H., Front. Chem., 2020, vol. 8. https://doi.org/10.3389/fchem.2020.00203

  10. Schmidt, G., Reiser, M., and Baur-Melnyk, A., Seminars in Musculoskeletal Radiology, 2009, no. 13(2), pp. 120–133. https://doi.org/10.1055/s-0029-1220883

    Article  PubMed  Google Scholar 

  11. Kather, J.N., Weidner, A., Attenberger, U., Bukschat, Y., Weis, C.-A., Weis, M., Schad, L.R., and Zöllner, F.G., Sci. Rep., 2017, vol. 7, no. 1, pp. 1–11. https://doi.org/10.1038/srep41107

    Article  CAS  Google Scholar 

  12. Edelman, R.R., Radiology, 2014, no. 273(2S), pp. 181–200. https://doi.org/10.1148/radiol.14140706

    Article  Google Scholar 

  13. Cyran, C.C., Paprottka, P.M., and Eisenblätter, M., Radiat. Oncol., 2014, vol. 9, no. 1, pp. 1–15. https://doi.org/10.1186/1748-717X-9-3

    Article  Google Scholar 

  14. .Bychkovsky, P.M., Russ. Biother. J., 2011, vol. 10, no. 3.

  15. Agafonov, D.A., Abstract of Papers, All-Russian Student Sci. and Practical Conf. “Topical Issues of Pharmaceutical and Natural Sciences,” 2020, pp. 162–164.

  16. Giasuddin, A.S.M., Jhuma, K.A., and Haq, A.M.M., Bangladesh J. Med. Biochem., 2012, vol. 5, no. 2, pp. 56–60.

    Article  Google Scholar 

  17. Tian, L., Sci. Rep., 2017, vol. 7, no. 1, pp. 1–10.

    Article  Google Scholar 

  18. Bao, Y., Sherwood, J.A., and Sun, Z., J. Mater. Chem. C, 2018, vol. 6, no. 6, pp. 1280–1290.

    Article  CAS  Google Scholar 

  19. Shen, Z., Chen, T., Ma, X., Ren, W., Zhou, Z., Zhu, G., Zhang, A., Liu, Y., Song, J., Li, Z., Ruan, H., Fan, W., Lin, L., Munasinghe, J., Chen, X., and Wu, A., ACS Nano, 2017, vol. 11, no. 11, pp. 10992–11004. https://doi.org/10.1021/acsnano.7b04924

    Article  CAS  PubMed  Google Scholar 

  20. Wahsner, J., Gale, E.M., Rodríguez-Rodríguez, A., and Caravan, P., Chem. Rev., 2018, no. 119(2), pp. 957–1057. https://doi.org/10.1021/acs.chemrev.8b00363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Taukulis, R., Widdrat, M., Kumari, M., Heinke, D., Rumpler, M., Tompa, E., Uebe, R., Kraupner, A., Cebers, A., Sculer, D., Posfai, M., Hirt, A.M., and Faivre, D., Magnetohydrodynamics, 2015, vol. 51, no. 4, pp. 721–747.

    Article  Google Scholar 

  22. Bogdanov, Jr.A. and Mazzanti, M.L., Seminars in Oncolog., 2011, vol. 38(1), pp. 42–54. https://doi.org/10.1053/j.seminoncol.2010.11.002

    Article  CAS  Google Scholar 

  23. Nosrati, H., Salehiabar, M., Fridoni, M., Abdollahifar, M.-A., Manjili, H.K., Davaran, S., and Danafar, H., Sci. Rep., 2019, vol. 9, no. 1, pp. 1–10. https://doi.org/10.1038/s41598-019-43650-4

    Article  CAS  Google Scholar 

  24. Blinov, A.V., Physico-Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials, 2019, no. 11, pp. 298–306.

    Article  CAS  Google Scholar 

  25. Blinov, A.V., Blinova, A.A., Kravtsov, A.A., Gvozdenko, A.A., Kobina, A.V., and Momot, E.V., AIP Conf. Proc.: XV International Scientific-Technical Conference “Dynamics of Technical Systems,” DTS 2019, Rostovon-Don, 11 September 13, 2019, p. 040011. https://doi.org/10.1063/1.5138420

  26. Gvozdenko, A.A., Blinov, A.V., Yasnaya, M.A., Golik, A.B., Raffa, V.V., Kramarenko, V.N., Maglakelidze, D.G., and Shevchenko, I.M., Physico-Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials, 2020, no. 12, pp. 394–404. https://doi.org/10.26456/pcascnn/2020.12.394

    Article  CAS  Google Scholar 

  27. Malinovsky, V.K., Solid State Phys., 2000, vol. 42, no. 1, pp. 62–68.

    Article  Google Scholar 

  28. Ilves, V.G., Zuev, M.G., Sokovnin, C.Yu., and Murzakaev, A.M., Solid State Phys., 2015, vol. 57, no. 12, pp. 2439–2445.

    Google Scholar 

  29. Karamipour, S., Sadjadi, M.S., and Farhadyar, N., Spectrochim. Acta, A, 2015, vol. 148, pp. 146–155. https://doi.org/10.1016/j.saa.2015.03.078

    Article  CAS  Google Scholar 

  30. Wei, G., Shu, X., Zhang, Z., Luo, F., Liu, Y., Li, B., and Lu, X., J. Nuclear Mater., 2021, vol. 543, p. 152619. https://doi.org/10.1016/j.jnucmat.2020.152619

    Article  CAS  Google Scholar 

  31. Yastrebinskii, R.N., Bondarenko, G.G., and Pavlenko, A.V., Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 2, pp. 221–226. https://doi.org/10.1134/s2075113318020326

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to the Cand. Sc. (Physics and Mathematics), Acting Head of the Department of Physics and Technology of Nanostructures and Materials of the NCFU Anna Gagikovna Ispiryan for her help in measuring the magnetic properties of a three-component Fe3O4–Au–SiO2 nanosystem and Cand. Sc. (Biology), Head of the Interdepartmental Scientific and Educational Laboratory of Experimental Immunomorphology, Immunopathology and Immunobiotechnology, Igor V. Rzhepakovsky, for assistance in the study of X-ray contrast properties of a three-component Fe3O4–Au–SiO2 nanosystem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Blinov.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gvozdenko, A.A., Blinov, A.V., Slyadneva, K.S. et al. X-Ray Contrast Magnetic Diagnostic Tool Based on a Three-Component Nanosystem. Russ J Gen Chem 92, 1153–1160 (2022). https://doi.org/10.1134/S1070363222060305

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222060305

Keywords:

Navigation