Skip to main content
Log in

Molecular Modelling, Optical and Electrochemical Properties of Novel 3-Arylazo-thieno[3,2-b]pyranone for Photovoltaic Application

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Three 3-arylazo-thieno[3,2-b]pyranone dyes HTM1–3 have been synthesized by cyclocondensation of ethyl 2-arylazo-(2-phenylthiocarbamoyl)acetate derivatives with ethyl 4-chloro-3-oxobutanoate in ethanolic sodium ethoxide solution. IR, 1H and, 13C NMR, and mass spectra have confirmed the structure of dyes. The impact of substituents (methyl, methoxy and chloride) on physical, chemical and optoelectronic properties of the synthesized dyes has been studied. Optical properties such as extinction coefficient, photoluminescence and optical bandgap of thin films have been studied. The optical energy gap has been computed in the range of 1.97– 2.18 eV. Thermal analysis, molecular modelling and electronic energy levels have been investigated. Typically, these small molecules exhibit promising charge carrier mobility and are proposed to be strong candidates for p-type semiconductors (hole transport layer). Overall, because of their excellent optical absorption, appropriate energy-level alignment and favorable molecule packing, the prepared thienopyran materials could be a good choice for solar cell applications and light-harvesting capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Ušćumlić, G.S., Mijin, D.Z., Valentić, N.V., Vajs, V.V., and Sušić, B.M., Chem. Phys. Lett., 2004, vol. 397, nos. 1–3, p. 148. https://doi.org/10.1016/j.cplett.2004.07.057

    Article  CAS  Google Scholar 

  2. Raposo, M.M.M., Sousa, A.M., Fonseca, A.M.C., and Kirsch, G., Tetrahedron, 2005, vol. 61, no. 34, p. 8249. https://doi.org/10.1016/j.tet.2005.06.039

    Article  CAS  Google Scholar 

  3. Radwan, A., Makhlouf, M., and Abdel-Latif, E., Dyes Pigm., 2016, vol. 134, p. 516. https://doi.org/10.1016/j.dyepig.2016.07.043

    Article  CAS  Google Scholar 

  4. Nazim, M., Ameen, S., Akhtar, M.S., and Shin, H.-S., Solar Energy, 2018, vol. 171, p. 366. https://doi.org/10.1016/j.solener.2018.06.087

    Article  CAS  Google Scholar 

  5. Isakovskaya, K.L., Nikovskii, I.A., and Nelyubina, Yu.V., Russ. J. Coord. Chem., 2021, vol. 47, no. 6, p. 365. https://doi.org/10.1134/S1070328421060026

  6. Yang, Y.S., Yasuda, T., Kakizoe, H., Mieno, H., Kino, H., Tateyama, Y., and Adachi, C., Chem. Commun., 2013, vol. 49, no. 58, p. 6483. https://doi.org/10.1039/C3CC42114G

    Article  CAS  Google Scholar 

  7. Yuan, Y., Giri, G., Ayzner, A.L., Zoombelt, A.P., Mannsfeld, S.C., Chen, J., Nordlund, D., Toney, M.F., Huang, J., and Bao, Z., Nature Commun., 2014, vol. 5, p. 3005. https://doi.org/10.1038/ncomms4005

    Article  CAS  Google Scholar 

  8. Kumaresan, P., Vegiraju, S., Ezhumalai, Y., Yau, S.L., Kim, C., Lee, W.-H., and Chen, M.-C., Polymers, 2014, vol. 6, no. 10, p. 2645. https://doi.org/10.3390/polym6102645

    Article  CAS  Google Scholar 

  9. Sadeghzadeha, P., Pordela, M., and Davoodniaa, A., Russ. J. Org. Chem., 2021, vol. 57, no. 3, p. 440. https://doi.org/10.1134/S1070428021030167

    Article  Google Scholar 

  10. Jiang, Q., Zhao, Y., Zhang, X., Yang, X., Chen, Y., Chu, Z., Ye, Q., Li, X., Yin, Z., and You, J., Nat. Photonics, 2019, vol. 13, p. 460. https://doi.org/10.1038/s41566-019-0398-2

    Article  CAS  Google Scholar 

  11. Lu, H., Wu, F., Yang, Y., Li, S., Hua, Y., and Zhu, L., J. Mater. Chem. C, 2020, vol. 8, no. 38, p. 13415. https://doi.org/10.1039/D0TC03404E

  12. Meng, F., Wang, Y., Wen, Y., Lai, X., Li, W., Kyaw, A.K.K., Zhang, R., Fan, D., Li, Y., and Du, M., Solar RRL, 2020, vol. 4, no. 10, p. 2070105. https://doi.org/10.1002/solr.202070105

  13. Wang, Y., Chen, W., Wang, L., Tu, B., Chen, T., Liu, B., Yang, K., Koh, C.W., Zhang, X., Sun, H., Adv. Mater., 2019, vol. 31, no. 35, p. 1902781. https://doi.org/10.1002/adma.201902781

    Article  CAS  Google Scholar 

  14. Liang, L., Wang, Y., Zhang, Z., Wang, J., Feng, K., Ma, S., Li, Y., Guo, X., and Gao, P., ACS Appl. Energy Mater., 2021, vol. 4, no. 2, p. 1250. https://doi.org/10.1021/acsaem.0c02531

  15. Zhang, Z., Liang, L., Deng, L., Ren, L., Zhao, N., Huang, J., Yu, Y., and Gao, P., ACS Appl. Mater. Interfaces, 2021, vol. 13, no. 5, p. 6688. https://doi.org/10.1021/acsami.0c21729

  16. Elseman, A.M., Sharmoukh, W., Sajid, S., Cui, P., Ji, J., Dou, S., Wei, D., Huang, H., Xi, W., and Chu, L., Adv. Sci., 2018, vol. 5, no. 11, p. 1800568. https://doi.org/10.1002/advs.201800568

  17. Li, M.-H., Sun, T.-G., Shao, J.-Y., Wang, Y.-D., Hu, J.-S., and Zhong, Y.-W., Nano Energy, 2021, vol. 79, p. 105462. https://doi.org/10.1016/j.nanoen.2020.105462

    Article  CAS  Google Scholar 

  18. Jiang, K., Wang, J., Wu, F., Xue, Q., Yao, Q., Zhang, J., Chen, Y., Zhang, G., Zhu, Z., and Yan, H., Adv. Mater., 2020, vol. 32, no. 16, p. 1908011. https://doi.org/10.1002/adma.201908011

    Article  CAS  Google Scholar 

  19. Liu, S., Cao, W., Xia, D., Zhang, J., Fan, J., An, C., Fan, R., Hao, S., Lin, K., and Yang, Y., Dyes Pigm., 2021, vol. 193, p. 109506. https://doi.org/10.1016/j.dyepig.2021.109506

  20. An, J., Yang, X., Tian, Z., Cai, B., Zhang, L., Yu, Z., Wang, X., Hagfeldt, A., and Sun, L., Tetrahedron, 2021, vol. 88, p. 132124. https://doi.org/10.1016/j.tet.2021.132124

    Article  CAS  Google Scholar 

  21. Kothavale, S. and Sekar, N., Dyes Pigm., 2017, vol. 136, p. 31. https://doi.org/10.1016/j.dyepig.2016.08.032

    Article  CAS  Google Scholar 

  22. Rashad, M., Hassan, A., Nassar, A., Ibrahim, N., and Mourtada, A., Appl. Phys. A, 2014, vol. 117, p. 877. https://doi.org/10.1007/s00339-014-8448-6

    Article  CAS  Google Scholar 

  23. Elseman, A.M., Rayan, D., and Rashad, M., J. Mater. Sci.: Materials in Electronics, 2016, vol. 27, no. 3, p. 2652. https://doi.org/10.1007/s10854-015-4073-1

    Article  CAS  Google Scholar 

  24. Elseman, A.M., Rashad, M.M., and Hassan, A.M., ACS Sustainable Chem. Eng., 2016, vol. 4, no. 9, p. 4875. https://doi.org/10.1021/acssuschemeng.6b01183

    Article  CAS  Google Scholar 

  25. Makuła, P., Pacia, M., and Macyk, W., J. Phys. Chem. Lett., 2018, vol. 9, no. 23, p. 6814. https://doi.org/10.1021/acs.jpclett.8b02892

    Article  CAS  PubMed  Google Scholar 

  26. Yang, L., and Kruse, B., JOSA A, 2004, vol. 21, no. 10, p. 1933. https://doi.org/10.1364/JOSAA.21.001933

  27. Selim, M.S., Elseman, A.M., and Hao, Z., ACS Appl. Energy Mater., 2020, vol. 3, no. 12, p. 11781. https://doi.org/10.1021/acsaem.0c01945

    Article  CAS  Google Scholar 

  28. Rashad, M.M., Elseman, A.M., and Hassan, A.M., Optik, 2016, vol. 127, no. 20, p. 9775. https://doi.org/10.1016/j.ijleo.2016.07.054

    Article  CAS  Google Scholar 

  29. Menke, S.M. and Holmes, R.J., Energy Environ. Sci., 2014, vol. 7, no. 2, p. 499. https://doi.org/10.1039/C3EE42444H

    Article  CAS  Google Scholar 

  30. Clarke, T.M. and Durrant, J.R., Chem. Rev., 2010, vol. 110, no. 11, p. 6736. https://doi.org/10.1021/cr900271s

  31. Hill, I.G., Kahn, A., Soos, Z.G., and Pascal, R.A., Chem. Phys. Lett., 2000, vol. 327, nos. 3–4, p. 181. https://doi.org/10.1016/S0009-2614(00)00882-4

    Article  CAS  Google Scholar 

  32. Djurovich, P.I., Mayo, E.I., Forrest, S.R., and Thompson, M.E., Org. Electron., 2009, vol. 10, p. 515. https://doi.org/10.1016/j.orgel.2008.12.011

    Article  CAS  Google Scholar 

  33. Makhlouf, M.M., Radwan, A.S., and Ghazal, B., Appl. Surf. Sci., 2018, vol. 452, p. 337. https://doi.org/10.1016/j.apsusc.2018.05.007

    Article  CAS  Google Scholar 

  34. Kotan, G., Gökce, H., Akyıldırım, O., Yüksek, H., Beytur, M., Manap, S., and Medetalibeyoğlu, H., Russ. J. Org. Chem., 2020, vol. 56, no. 11, p. 1982. https://doi.org/10.1134/S1070428020110135

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Taif University Researchers Supporting Project number (TURSP-2020/165), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmed S. Radwan or Mohamed M. Makhlouf.

Ethics declarations

No conflict of interests was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elseman, A.M., Radwan, A.S., Makhlouf, M.M. et al. Molecular Modelling, Optical and Electrochemical Properties of Novel 3-Arylazo-thieno[3,2-b]pyranone for Photovoltaic Application. Russ J Gen Chem 92, 1121–1128 (2022). https://doi.org/10.1134/S1070363222060251

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222060251

Keywords:

Navigation