Skip to main content
Log in

Synthesis, Antifungal Activity, and QSAR Studies of Benzbutyrolactone Derivatives Based on α-Methylene-γ-butyrolactone Scaffold

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

α-Methylene-γ-butyrolactone scaffold and benzofuran pharmacophore demonstrate a number of valuable medicinal properties. Based on bioactivity-guided mixed synthesis principle, we have designed and synthesized a series of new derivatives combining these two substructures. Antifungal activity of the products against some pathogenic fungi and cytotoxicity has been tested. QSAR has been performed. All зкщвгсеы demonstrate high activity against B. cinerea and G. graminis. Compounds with the 4-fluorophenyl group and compound connected with the cinnamic aldehyde structure demonstrate superior in vitro and in vivo activity. Results of SARs and QSAR studies exhibit that the lower electron density around the α-methylene-γ-butyrolactone backbone structure and smaller steric hindrance on the exocyclic carbon-carbon double bond are beneficial for antifungal activity. The results indicate benzbutyrolactone derivatives with α-methylene-γ-butyrolactone and benzofuran pharmacophore as highly active low-toxic compounds with the fungicide potential potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Brase, S., Encinas, A., Keck, J., and Nising, C.F., Chem. Rev., 2009, vol. 109, p. 3903. https://doi.org/10.1021/cr050001f

  2. Dodds, P.N. and Rathjen, J.P., Nat. Rev. Genet., 2010, vol. 11, p. 539. https://doi.org/10.1038/nrg2812

  3. Feng, J., Zhang, Y., Wang, J., and Zhang, X., Chin. J. Pesticide Sci., 2007, vol. 9, p. 185. https://doi.org/10.3321/j.issn:1008-7303.2007.02.016

  4. Wang, D.L., Wang, L.Y., Wu, Y.L., Song, S., Feng, J.T., and Zhang, X., Eur. J. Med. Chem., 2017, vol. 130, p. 286. https://doi.org/10.1016/j.ejmech.2017.02.050

  5. Feng, J.T., Ma, Z.Q., Li, J.H., He, J., Xu, H., and Zhang, X., Molecules, 2010, vol. 15, p. 6485. https://doi.org/10.3390/molecules15096485

  6. Feng, J.T., Wang, H., Ren, S.X., He, J., Liu, Y., and Zhang, X., J. Agric. Food Chem, 2012, vol. 60, p. 3817. https://doi.org/10.1021/jf205123d

    Article  CAS  PubMed  Google Scholar 

  7. Wu, Y.L., Gao, Y.Q., Wang, D.L., Zhong, C.Q., Feng, J.T., Zhang, X., RSC Adv., 2017, vol. 7, p. 56496. https://doi.org/10.1039/C7RA12471F

    Article  CAS  Google Scholar 

  8. Miyazawa, M., Shimabayashi, H., Hayashi, S., Hashimoto, S., Nakamura, S., Kosaka, H., and Kameoka, H., J. Agric. Food Chem., 2000, vol. 48, p. 5406. https://doi.org/10.1021/jf000346t

  9. Han, C., Barrios, F.J., Mark, V.R., and David, A.C., Cheminform., 2010, vol. 5, p. 41. https://doi.org/10.1002/chin.201005184

  10. Irakusne, L., Santiago, R., Javier, I., and Florenci, V., J. Org. Chem., 2007, vol. 72, p. 6614. https://doi.org/10.1021/jo0709955

  11. Wu, Y.L., Wang, D.L., Guo, E.H., Song, S., Feng, J.T., and Zhang. X., Bioorg. Med. Chem. Lett., 2017, vol. 27, p. 1284. https://doi.org/10.1016/j.bmcl.2017.01.030

  12. Shin, S.Y., Shin, M.C., Shin, J.S., Lee, K.T., and Lee, Y.S., Bioorg. Med. Chem. Lett., 2011, vol. 21, p. 4520. https://doi.org/10.1016/j.bmcl.2011.05.117

  13. Cole, A.L., Hossain, S., Cole, A.M., and Phanstiel, O., Bioorg. Med. Chem., 2016, vol. 24, p. 2768. https://doi.org/10.1016/j.bmc.2016.04.045

  14. Wu, Y.L., Wang, D.L., Gao, Y.Q., Feng, J.T., and Zhang. X., Molecules. 2016, vol. 21, p. 130. https://doi.org/10.3390/molecules21020130

  15. Cho, A., Song, C.E., Lee, S.K., Shin, W.S., and Lim, E., J. Mater. Sci., 2016, vol. 51, p. 6770. https://doi.org/10.1007/s10853-016-9964-x

    Article  CAS  Google Scholar 

  16. Sharma, P., Kumar, A., Upadhyay, S., Sahu, V., and Singh, J., Eur. J. Med. Chem., 2009, vol. 44, p. 251. https://doi.org/10.1016/j.ejmech.2008.02.016

    Article  CAS  PubMed  Google Scholar 

  17. Kalani, K., Yadav, D., Khan, F., Srivastava, S., and Suri, N., J. Mol. Model., 2012, vol. 18, p. 3389. https://doi.org/10.1007/s00894-011-1327-6

Download references

Funding

We greatly appreciate the funding support for this research provided by the Natural Science Foundation of Shaanxi Province (no. 2021JQ-842), Shengyong Zhang Academician Project of Shangluo University (no. 18YSZX005) and Introduction of Talent Research Start-up Fund of Shangluo University (no. 18SKY004). We also thank Northwest A&F University for the 1H NMR, 13C NMR, and HR-ESI-MS spectral data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Ling Wu.

Ethics declarations

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, YL., Wei, J., Meng, YF. et al. Synthesis, Antifungal Activity, and QSAR Studies of Benzbutyrolactone Derivatives Based on α-Methylene-γ-butyrolactone Scaffold. Russ J Gen Chem 92, 1085–1097 (2022). https://doi.org/10.1134/S1070363222060214

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222060214

Keywords:

Navigation