Skip to main content
Log in

Quantum-Chemical Simulation of Charge-Transfer Complexes of 2,4,7-Trinitro-9H-fluoren-9-one with Donor Molecules. Crystal and Molecular Structure of the 1 : 1 Complex of 2,4,7-Trinitro-9H-fluoren-9-one with Anthracene

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Quantum-chemical simulations of charge-transfer complexes of 2,4,7-trinitro-9H-fluoren-9-one with eight donor molecules differing in size and structure of the π-aromatic system have been performed in the scope of the density functional theory approximation, and data on the structure and properties of the complexes have been obtained. The electronic and energy characteristics of the acceptor, donors and the complexes, the average interplanar distances, and the values of charge transfer in the complexes have been obtained, and regularities in the change of these quantities have been elucidated. The crystal and molecular structure of the 1 : 1 complex of 2,4,7-trinitro-9H-fluoren-9-one with anthracene (C13H5N3O7·C14H10) have been determined by means of X-ray diffraction analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Mulliken, R.S. and Person, W.B., Molecular Complexes, New York: Wiley-Interscience, 1969. https://doi.org/10.1016/0022-2860(71)87071-0

  2. Starodub, V.A. and Starodub, T.N., Russ. Chem. Rev., 2014, vol. 83, no. 5, p. 391. https://doi.org/10.1070/RC2014v083n05ABEH004299

    Article  CAS  Google Scholar 

  3. Dobrowolski, M.A., Garbarino, G., Mezouar, M., Ciesielski, A., and Cyrański, M.K., CrystEngComm., 2014, vol. 16, p. 415. https://doi.org/10.1039/C3CE41703D

    Article  CAS  Google Scholar 

  4. Ferraris, J., Cowan, D.O., Walatka, V., and Perlstein, J.H., J. Am. Chem. Soc., 1973, vol. 95, no. 3, p. 948. https://doi.org/10.1021/ja00784a066

    Article  CAS  Google Scholar 

  5. Goetz, K.P., Vermeulen, D., Payne, M.E., Kloc, C., McNeil, L.E., and Jurchescu, O.D., J. Mater. Chem. C, 2014, vol. 2, no. 17, p. 3065. https://doi.org/10.1039/C3TC32062F

    Article  CAS  Google Scholar 

  6. Coleman, L.B., Cohen, M.J., Sandman, D.J., Yamagi shi, F.G., Garito, A.F., and Heege, A.J., Solid State Commun., 1973, vol. 12, no. 11, p. 1125. https://doi.org/10.1016/0038-1098(73)90127-0

    Article  CAS  Google Scholar 

  7. Wosnitza, J., J. Low Temp. Phys., 2007, vol. 146, p. 641. https://doi.org/10.1007/s10909-006-9282-9

    Article  CAS  Google Scholar 

  8. Yu, W., Wang, X.-Y., Li, J., Li, Z.-T., Yan, Y.-K., Wang, W., and Pei, J., Chem. Commun., 2013, vol. 49, no. 1, p. 54. https://doi.org/10.1039/c2cc37655e

    Article  CAS  Google Scholar 

  9. Korshak, Yu.V., Medvedeva, T.V., Ovchinnikov, A.A., and Spector, V.N., Nature, 1987, vol. 326, p. 370. https://doi.org/10.1038/326370a0

    Article  CAS  Google Scholar 

  10. Singleton, J., J. Solid State Chem., 2002, vol. 168, no. 2, p. 675. https://doi.org/10.1006/jssc.2002.9766

    Article  CAS  Google Scholar 

  11. Radvakova, A., Kazheva, O.N., Chekhlov, A.N., Dyachenko, O.A., Kucmin, M., Kajnakova, M., Feher, A., and Starodub, V.A., J. Phys. Chem. Solids, 2010, vol. 71, no. 5, p. 752. https://doi.org/10.1016/j.jpcs.2010.01.012

    Article  CAS  Google Scholar 

  12. Horiuchi, S., Kobayashi, K., Kumai, R., Minami, N., Kagawa, F., and Tokura, Y., Nat. Commun., 2015, vol. 6, p. 7469. https://doi.org/10.1038/ncomms8469

    Article  PubMed  Google Scholar 

  13. Narayanan, A., Cao, D., Frazer, L., Tayi, A.S., Black burn, A.K., Sue, A.C.H., Ketterson, J.B., Stoddart, J.F., and Stupp, S.I., J. Am. Chem. Soc., 2017, vol. 139, no. 27, p. 9186. https://doi.org/10.1021/jacs.7b02279

    Article  CAS  PubMed  Google Scholar 

  14. Menard, E., Podzorov, V., Hur, S.-H., Gaur, A., Gershenson, M.E., Rogers, J.A., Adv. Mater., 2004, vol. 16, p. 2097. https://doi.org/10.1002/adma.200401017

    Article  CAS  Google Scholar 

  15. Mukherjee, B. and Mukherjee, M., Langmuir., 2011, vol. 27, p. 11246. https://doi.org/10.1021/la201780c

    Article  CAS  PubMed  Google Scholar 

  16. Otero, R., Gallego, J.M., Vasquez de Parga, A.L., Martin, N., and Miranda, R., Adv. Mater., 2011, vol. 23, p. 5148. https://doi.org/10.1002/adma.201102022

    Article  CAS  PubMed  Google Scholar 

  17. Suzuki, A., Ohtsuki, T., Oku, T., and Akiyama, T., Mater. Sci. Eng. (B), 2012, vol. 177, p. 877. https://doi.org/10.1016/j.mseb.2012.03.052

    Article  CAS  Google Scholar 

  18. Shiraishi, M. and Ikoma, T., Physica (E), 2011, vol. 43, no. 7, p. 1295. https://doi.org/10.1016/j.physe.2011.02.010

    Article  CAS  Google Scholar 

  19. Bakulin, A.A., Martyanov, D., Paraschuk, D.Yu., van Loosdrecht, H.M.P., and Pshenichnikov, M.S., Chem. Phys. Lett., 2009, vol. 482, p. 99. https://doi.org/10.1016/j.cplett.2009.09.052

    Article  CAS  Google Scholar 

  20. Parashchuk, O.D., Bruevich, V.V., and Paraschuk, D.Yu., Phys. Chem. Chem. Phys., 2010, vol. 12, p. 6021. https://doi.org/10.1039/b927324g

    Article  CAS  PubMed  Google Scholar 

  21. Sosorev, A.Yu., Parashchuk, O.D., Zapunidi, S.A., Kashtanov, G.S., Golovnin, I.V., Kommanaboyina, S., Perepichka, I.F., and Paraschuk, D.Yu., Phys. Chem. Chem. Phys., 2016, vol. 18, p. 4684. https://doi.org/10.1039/c5cp05266a

    Article  CAS  PubMed  Google Scholar 

  22. Sevignon, M., Macaud, M., Favre-Reguillon, A., Schulz, J., Rocault, M., Faure, R., Vrinatd, M., and Lemaire, M., Green Chem., 2005, vol. 7, p. 413. https://doi.org/10.1039/b502672e

    Article  CAS  Google Scholar 

  23. Nasrallah, H., Pagnoux, A., Didier, D., Magnier, C., Toupet, L., Guillot, R., Crévisy, C., Mauduit, M., and Schulz, E., Eur. J. Org. Chem., 2014, p. 7781. https://doi.org/10.1002/ejoc.201403194

  24. Hu, P., Du, K., Wei, F., Jiang, H., and Kloc, C., Cryst. Growth Des., 2016, vol. 16, no. 5, p. 3019. https://doi.org/10.1021/acs.cgd.5b01675

    Article  CAS  Google Scholar 

  25. Singh, M. and Chopra, D., Cryst. Growth Des., 2018, vol. 18, no. 11, p. 6670. https://doi.org/10.1021/acs.cgd.8b00918

    Article  CAS  Google Scholar 

  26. Averkiev, B., Isaac, R., Jucov, E.V., Khrustalev, V.N., Kloc, C., McNeil, L.E., and Timofeeva, T.V., Cryst. Growth Des., 2018, vol. 18, no. 7, p. 4095. https://doi.org/10.1021/acs.cgd.8b00501

    Article  CAS  Google Scholar 

  27. Saito, G. and Murata, T., Philos. Trans. R. Soc. (A), 2008, vol. 366, p. 139. https://doi.org/10.1098/rsta.2007.2146

    Article  CAS  Google Scholar 

  28. Linko, R.V., Ryabov, M.A., Strashnov, P.V., Polyanskaya, N.A., Davydov, V.V., Dorovatovskii, P.V., Lin’ko, I.V., and Khrustalev, V.N., J. Struct. Chem., 2021, vol. 62, p. 137. https://doi.org/10.1134/S0022476621010169

    Article  CAS  Google Scholar 

  29. Linko, R., Ryabov, M., Strashnov, P., Dorovatovskii, P., Khrustalev, V., and Davydov, V., Molecules, 2021, vol. 26, no. 21, p. 6391. https://doi.org/10.3390/molecules26216391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Minacheva, L.Kh., Sergienko, V.S., Strashnova, S.B., Avramenko, O.V., Koval’chukova, O.V., Egorova, O.A., and Zaitsev, B.E., Crystallogr. Rep., 2005, vol. 50, no. 1, p. 72. https://doi.org/10.1134/1.1857248

    Article  CAS  Google Scholar 

  31. Sinclair, V.C., Robertson, J.M., and Mathieson, A.M., Acta Crystallogr., 1950, vol. 3, p. 251. https://doi.org/10.1107/S0365110X50000653

    Article  CAS  Google Scholar 

  32. Pavelyev, V.G., Parashchuk, O.D., Krompiec, M., Orekhova, T.V., Perepichka, I.F., van Loosdrecht, P.H.M., Paraschuk, D.Yu., and Pshenichnikov, M.S., J. Phys. Chem. (C), 2014, vol. 118, p. 30291. https://doi.org/10.1021/jp510543c

    Article  CAS  Google Scholar 

  33. Battye, T.G.G., Kontogiannis, L., Johnson, O., Powell, H.R., and Leslie, A.G.W., Acta Crystallogr. (D), 2011, vol. 67, p. 271. https://doi.org/10.1107/S0907444910048675

    Article  CAS  Google Scholar 

  34. Evans, P., Acta Crystallogr. (D), 2006, vol. 62, p. 72. https://doi.org/10.1107/S0907444905036693

    Article  CAS  Google Scholar 

  35. Sheldrick, G.M., Acta Crystallogr. (C), 2015, vol. 71, p. 3. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  36. Boys, S.F. and Bernardi, F., Molecular Physics, 1970, vol. 19, no. 4, p. 553. https://doi.org/10.1080/00268977000101561

    Article  CAS  Google Scholar 

  37. Caldeweyher, E., Bannwarth, C., and Grimme, S., J. Chem. Phys., 2017, vol. 147, no. 3, p. 034112. https://doi.org/10.1063/1.4993215

    Article  CAS  Google Scholar 

  38. Glendening, E.D., Badenhoop, J.K., Reed, A.E., Carpen ter, J.E., Bohmann, J.A., Morales, C.M., and Weinhold, F., NBO, 5.G. Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, 2004.

  39. Granovsky, A.A., Firefly Version 8.20. http://classic.chem.msu.su/gran/firefly/index.html

Download references

Funding

This paper has been supported by the RUDN University Strategic Academic Leadership Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Linko.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linko, R.V., Ryabov, M.A., Strashnov, P.V. et al. Quantum-Chemical Simulation of Charge-Transfer Complexes of 2,4,7-Trinitro-9H-fluoren-9-one with Donor Molecules. Crystal and Molecular Structure of the 1 : 1 Complex of 2,4,7-Trinitro-9H-fluoren-9-one with Anthracene. Russ J Gen Chem 92, 212–223 (2022). https://doi.org/10.1134/S1070363222020104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222020104

Keywords:

Navigation