Skip to main content
Log in

7-Aryl-3-(hydroxymethyl)-5-oxo-1,2,3,5-tetrahydro[1,2,4]triazolo[1,5-a]pyridine-6,8-dicarbonitriles: Synthesis and Predicted Biological Activity

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Aminomethylation of 1,6-diamino-4-aryl-2-oxo-1,2-dihydropyridine-3,5-dicarbonitriles under the action of excess of formaldehyde in ethanol has led to the formation of 7-aryl-3-(hydroxymethyl)-5-oxo-1,2,3,5-tetrahydro[1,2,4]triazolo[1,5-a]pyridine-6,8-dicarbonitriles. Bioavailability parameters of the obtained compounds have been predicted in silico and the possible protein targets have been predicted via the protein-ligand docking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Soto, J.L., Seoane, C., Zamorano, P., and Cuadrado, F.J., Synthesis, 1981, no. 7, p. 529. https://doi.org/10.1055/s-1981-29512

    Article  Google Scholar 

  2. Al-Najjar, A.A., Amer, S.A., Raid, M., Elghamry, I., and Elnagdi, M.H., J. Chem. Res. (Synop.), 1996, p. 296.

  3. Bondock, S., Tarhoni, A.E.G., and Fadda, A.A., Arkivoc, 2006, vol. ix, p. 113. https://doi.org/10.3998/ark.5550190.0007.905

  4. Hosseini, H., Bayat, M., RSC Adv., 2018, vol. 8, no. 48, p. 27131. https://doi.org/10.1039/C8RA05690K

    Article  CAS  Google Scholar 

  5. Abdel Latif, F.F., Mekheimer, R., Ahmed, E.K., and Abdel Aleem, T.B., Pharmazie, 1993, vol. 48, no. 10, p. 736. https://doi.org/10.24355/dbbs.084-201901181427-0

    Article  Google Scholar 

  6. Hussein, A.H.M., Heteroatom Chem., 1997, vol. 8, no. 1, p. 1. https://doi.org/10.1002/(SICI)1098-1071(1997)8:1<1::AID-HC1>3.0.CO;2-J

    Article  CAS  Google Scholar 

  7. Kshiar, B., Shangpliang, O.R., and Myrboh, B., Synth. Commun., 2018, vol. 48, no. 14, p. 1816. https://doi.org/10.1080/00397911.2018.1468467

    Article  CAS  Google Scholar 

  8. Ibrahim, M.A. and El-Gohary, N.M., Heterocycles, 2014, vol. 89, no. 5, p. 1125. https://doi.org/10.3987/REV-13-790

    Article  CAS  Google Scholar 

  9. Mohamed, K.S., Tawfik, E.H., Dardeer, H.M., and Fadda, A.A., Acta Chim. Slov., 2018, vol. 65, no. 4, p. 787. https://doi.org/10.17344/acsi.2018.4294

    Article  CAS  PubMed  Google Scholar 

  10. Keerthy, H.K., Mohan, S., Bharathkumar, H., Rangappa, S., Svensson, F., Bender, A., Mohan, C.D., Rangappa, K.S., and Bhatnagar, R., Chem. Biodiversity, 2019, vol. 16, no. 9, paper no. e1900234. https://doi.org/10.1002/cbdv.201900234

  11. Mohamed, M.S., Zaki, M.E., Khalifa, Ν.M., and Zohny, Υ.M., Heterocycl. Commun., 2008, vol. 14, no. 5, p. 345. https://doi.org/10.1515/HC.2008.14.5.345

    Article  CAS  Google Scholar 

  12. Hadi, A., Martin, N., Seoane, C., Soto, J.L., Albert, A., and Cano, F., J. Heterocycl. Chem., 1992, vol. 29, no. 5, p. 1229. https://doi.org/10.1002/jhet.5570290531

    Article  CAS  Google Scholar 

  13. Nossier, E.S., El-Karim, A., Somaia, S., Khalifa, N.M., El-Sayed, A.S., Hassan, E.S., and El-Hallouty, S.M., Molecules, 2018, vol. 23, no. 12, p. 3074. https://doi.org/10.3390/molecules23123074

    Article  CAS  PubMed Central  Google Scholar 

  14. Ali, T.E. and Ibrahim, M.A., J. Braz. Chem. Soc., 2010, vol. 21, no. 7, p. 1007. https://doi.org/10.1590/S0103-50532010000600010

    Article  Google Scholar 

  15. Abdel-Megid, M., Chem. Heterocycl Compd., 2009, vol. 45, no. 12, p. 1523. https://doi.org/10.1007/s10593-010-0460-y

    Article  CAS  Google Scholar 

  16. Ibrahim, M.A., Abdel-Hamed, M.A., and El-Gohary, N.M., J. Braz. Chem. Soc., 2011, vol. 22, no. 6, p. 1130. https://doi.org/10.1590/S0103-50532011000600019

    Article  CAS  Google Scholar 

  17. Abdel-Megid, M., Ibrahim, M.A., Gabr, Y., El-Gohary, N.M., and Mohamed, E.A., J. Heterocycl. Chem., 2013, vol. 3, p. 615. https://doi.org/10.1002/jhet.1608

    Article  CAS  Google Scholar 

  18. Ibrahim, M.A., Abdel-Rahman, R.M., Abdel Halim, A.M., Ibrahim, S.S., and Allimony, H.A., J. Braz. Chem. Soc., 2009. Vol., 20, no. 7, p. 1275. https://doi.org/10.1590/s0103-50532009000700012

    Article  Google Scholar 

  19. Khanzadeh, M., Dehghanipour, M., Darehkordi, A., and Rahmani, F., Can. J. Phys., 2018, vol. 96, no. 12, p. 1288. https://doi.org/10.1139/cjp-2017-0840

    Article  CAS  Google Scholar 

  20. Barsy, M.A., El Rady, E.A., and Abd El Latif, F.M., J. Heterocycl. Chem., 2008, vol. 45, no. 3, p. 773. https://doi.org/10.1002/jhet.5570450322

    Article  CAS  Google Scholar 

  21. Assiri, M.A., Abdel-Kariem, S.M., Ali, T.E., and Yahia, I.S., Arkivoc , 2018, vol. v, p. 240. https://doi.org/10.24820/ark.5550190.p010.478

  22. Ranjbar-Karimi, R., Darehkordi, A., Bahadornia, F., and Poorfreidoni, A., J. Heterocycl. Chem., 2018, vol. 55, no. 11, p. 2516. https://doi.org/10.1002/jhet.3283

    Article  CAS  Google Scholar 

  23. Suresh, M., Jonnalagadda, S.B., and Rao, C.V., Orient. J. Chem., 2011, vol. 27, no. 1, p. 127. https://doi.org/

    CAS  Google Scholar 

  24. Tramontini, M., Synthesis, 1973, no. 12, p. 703. https://doi.org/10.1055/s-1973-22294

    Article  Google Scholar 

  25. Karimi, B., Enders, D., and Jafari, E., Synthesis, 2013, vol. 45, no. 20, p. 2769. https://doi.org/10.1055/s-0033-1339479

    Article  CAS  Google Scholar 

  26. Subramaniapillai, S.G., J. Chem. Sci., 2013, vol. 125, no. 3, p. 467. https://doi.org/10.1007/s12039-013-0405-y

    Article  CAS  Google Scholar 

  27. Akhmetova, V.R. and Rakhimova, E.B., Russ. J. Org. Chem., 2014, vol. 50, no. 12, p. 1711. https://doi.org/10.1134/S107042801412001X

    Article  CAS  Google Scholar 

  28. Dotsenko, V.V., Frolov, K.A., and Krivokolysko, S.G., Chem. Heterocycl. Compd., 2015, vol. 51, no. 2, p. 109. https://doi.org/10.1007/s10593-015-1668-7

    Article  CAS  Google Scholar 

  29. Dotsenko, V.V., Frolov, K.A., Chigorina, E.A., Khrustaleva, A.N., Bibik, E.Yu., and Krivokolysko, S.G., Russ. Chem. Bull., 2019, vol. 68, no. 4, p. 691. https://doi.org/10.1007/s11172-019-2476-5

    Article  CAS  Google Scholar 

  30. Khrustaleva, A.N., Frolov, K.A., Dotsenkо, V.V., Dmitrienko, A.O., Bushmarinov, I.S., and Krivokolysko, S.G., Chem. Heterocycl. Compds., 2014, vol. 50, no. 1, p. 46. https://doi.org/10.1007/s10593-014-1447-x

    Article  CAS  Google Scholar 

  31. Khrustaleva, A.N., Frolov, K.A., Dotsenkо, V.V., and Krivokolysko, S.G., Russ. J. Org. Chem., 2014, vol. 50, no. 12, p. 1804. https://doi.org/10.1134/S107042801412015X

    Article  CAS  Google Scholar 

  32. Dotsenko, V.V., Krivokolysko, S.G., and Litvinov, V.P., Chem. Heterocycl. Compd., 2007, vol. 43, no. 11, p. 1455. https://doi.org/10.1007/s10593-007-0224-5

    Article  CAS  Google Scholar 

  33. Dotsenko, V.V., Suikov, S.Yu., Pekhtereva, T.M., and Krivokolysko, S.G., Chem. Heterocycl. Compd., 2013, vol. 49, no. 7, p. 1009. https://doi.org/10.1007/s10593-013-1339-5

    Article  CAS  Google Scholar 

  34. Kurskova, A.O., Dotsenko, V.V., Frolov, K.A., Aksenov, N.A., Aksenova, I.V., Shcherbakov, S.V., Ovcharov, S.N., Krivokolysko, D.S., and Krivokolysko, S.G., Russ. J. Gen. Chem., 2021, vol. 91, no. 6, p. 971. https://doi.org/10.1134/S1070363221060037

    Article  CAS  Google Scholar 

  35. Dotsenko, V.V., Krivokolysko, S.G., and Litvinov, V.P., Russ. Chem. Bull., 2012, vol. 61, no. 1, p. 136. https://doi.org/10.1007/s11172-012-0019-4

    Article  CAS  Google Scholar 

  36. Frolov, K.A., Dotsenko, V.V., Krivokolysko, S.G., Zubatyuk, R.I., and Shishkin, O.V., Chem. Heterocycl. Compd., 2013, vol. 49, no. 3, p. 472. https://doi.org/10.1007/s10593-013-1270-9

    Article  CAS  Google Scholar 

  37. Frolov, K.A., Dotsenko, V.V., and Krivokolysko, S.G., Russ. Chem. Bull., 2013, vol. 62, no. 6, p. 1401. https://doi.org/10.1007/s11172-013-0201-3

    Article  CAS  Google Scholar 

  38. Khrustaleva, A.N., Dotsenkо, V.V., and Krivokolysko, S.G., Russ. J. Org. Chem., 2016, vol. 52, no. 9, p. 1368. https://doi.org/10.1134/S1070428016090232

    Article  CAS  Google Scholar 

  39. Orlov, A.A., Eletskaya, A.A., Frolov, K.A., Golinets, A.D., Palyulin, V.A., Krivokolysko, S.G., Kozlovskaya, L.I., Dotsenko, V.V., and Osolodkin, D.I., Arch. Pharm., 2018, vol. 351, no. 6, paper no. 1700353. https://doi.org/10.1002/ardp.201700353

  40. Kurskova, A.O., Dotsenko, V.V., Frolov, K.A., Aksenov, N.A., Aksenova, I.V., Krivokolysko, B.S., and Krivokolysko, S.G., Russ. J. Gen. Chem., 2021, vol. 91, no. 8, p. 1471. https://doi.org/10.1134/S1070363221080089

    Article  CAS  Google Scholar 

  41. Dotsenko, V.V., Khrustaleva, A.N., Frolov, K.A., Aksenov, N.A., Aksenova, I.V., and Krivokolysko, S.G., Russ. J. Gen. Chem., 2021, vol. 91, no. 1, p. 44. https://doi.org/10.1134/S1070363221010047

    Article  CAS  Google Scholar 

  42. Jones, G., Adv. Heterocycl. Chem., 2002, vol. 83, p. 1. https://doi.org/10.1016/S0065-2725(02)83003-3

    Article  CAS  Google Scholar 

  43. Vorob’ev, A.Y., Chem. Heterocycl. Compd., 2019, vol. 55, no. 8, p. 695. https://doi.org/10.1007/s10593-019-02522-5

    Article  CAS  Google Scholar 

  44. Van Rompaey, L., Galien, R., van der Aar, E.M., Clement-Lacroix, P., Nelles, L., Smets, B., Lepescheux, L., Christophe, T., Conrath, K., Vandeghinste, N., Vayssiere, B., De Vos, S., Fletcher, S., Brys, R., van’t Klooster, G., Feyen, J.H.M., and Menet, C., J. Immunol., 2013, vol. 191, no. 7, p. 3568. https://doi.org/10.4049/jimmunol.1201348

    Article  CAS  PubMed  Google Scholar 

  45. Menet, C.J., Fletcher, S.R., Van Lommen, G., Geney, R., Blanc, J., Smits, K., Jouannigot, N., Deprez, P., van der Aar, E.M., Clement-Lacroix, P., Lepescheux, L., Galien, R., Vayssiere, B., Nelles, L., Christophe, T., Brys, R., Uhring, M., Ciesielski, F., and Van Rompaey, L., J. Med. Chem., 2014, vol. 57, no. 22, p. 9323. https://doi.org/10.1021/jm501262q

    Article  CAS  PubMed  Google Scholar 

  46. Stump, K.L., Lu, L.D., Dobrzanski, P., Serdikoff, C., Gingrich, D.E., Dugan, B.J., Angeles, T.S., Albom, M.S., Ator, M.A., Dorsey, B.D., Ruggeri, B.A., and Seavey, M.M., Arthritis Res. Ther., 2011, vol. 13, no. 2. Paper R68. https://doi.org/10.1186/ar3329

  47. Seavey, M.M., Lu, L.D., Stump, K.L., Wallace, N.H., Hockeimer, W., O’Kane, T.M., Ruggeri, B.A., and Dobrzanski, P., Mol. Cancer Ther., 2012, vol. 11, no. 4, p. 984. https://doi.org/10.1158/1535-7163.MCT-11-0951

    Article  CAS  PubMed  Google Scholar 

  48. Cheon, J.H., Kim, K.S., Yadav, D.K., Kim, M., Kim, H.S., and Yoon, S., Biochem. Biophys. Res. Commun., 2017, vol. 490, no. 4, p. 1176. https://doi.org/10.1016/j.bbrc.2017.06.178

    Article  CAS  PubMed  Google Scholar 

  49. Nakajima, R., Oono, H., Sugiyama, S., Matsueda, Y., Ida, T., Kakuda, S., Hirata, J., Baba, A., Makino, A., Matsuyama, R., White, R.D., Wurz, R.P., Shin, Y., Min, X., Guzman-Perez, A., Wang, Z., Symons, A., Singh, S.K., Reddy Mothe, S., Belyakov, S., Chakrabarti, A., and Shuto, S., ACS Med. Chem. Lett., 2020, vol. 11, no. 4, p. 528. https://doi.org/10.1021/acsmedchemlett.9b00649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Oguro, Y., Cary, D.R., Miyamoto, N., Tawada, M., Iwata, H., Miki, H., Hori, A., and Imamura, S., Bioorg. Med. Chem., 2013, vol. 21, no. 15, p. 4714. https://doi.org/10.1016/j.bmc.2013.04.042

    Article  CAS  PubMed  Google Scholar 

  51. Liu, T. and Hu, Y., Bioorg. Med. Chem. Lett., 2002, vol. 12, no. 17, p. 2411. https://doi.org/10.1016/S0960-894X(02)00399-2

    Article  CAS  PubMed  Google Scholar 

  52. Girgis, A.S. and Barsoum, F.F., Eur. J. Med. Chem., 2009, vol. 44, p. 1972. https://doi.org/10.1016/j.ejmech.2008.09.049

    Article  CAS  PubMed  Google Scholar 

  53. Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J., Adv. Drug. Delivery Rev., 1997, vol. 23, nos. 1–3, p. 4. https://doi.org/10.1016/S0169-409X(96)00423-1

    Article  Google Scholar 

  54. Lipinski, C.A., Drug Discov. Today: Technologies, 2004, vol. 1, no. 4, p. 337. https://doi.org/10.1016/j.ddtec.2004.11.007

    Article  CAS  PubMed  Google Scholar 

  55. Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J., Adv. Drug. Delivery Rev., 2012, vol. 64, suppl, p. 4. https://doi.org/10.1016/j.addr.2012.09.019

    Article  Google Scholar 

  56. Sander, T., OSIRIS Property Explorer, Idorsia Pharmaceuticals Ltd, Switzerland. https://www.organic-chemistry.org/prog/peo/

  57. Daina, A., Michielin, O., and Zoete, V., Sci. Rep., 2017, vol. 7, article no. 42717. https://doi.org/10.1038/srep42717

  58. Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P.W., and Tang, Y., J. Chem. Inf. Model., 2012, vol. 52, no. 11, p. 3099. https://doi.org/10.1021/ci300367a

    Article  CAS  PubMed  Google Scholar 

  59. Yang, J., Kwon, S., Bae, S.H., Park, K.M., Yoon, C., Lee, J.H., and Seok, C., J. Chem. Inf. Model., 2020, vol. 60, no. 6, p. 3246. https://doi.org/10.1021/acs.jcim.0c00104

    Article  CAS  PubMed  Google Scholar 

  60. GalaxyWEB. A web server for protein structure prediction, refinement, and related methods. Computational Biology Lab, Department of Chemistry, Seoul National University, S. Korea. http://galaxy.seoklab.org/index.html

  61. Ko, J., Park, H., Heo, L., and Seok, C., Nucleic Acids Res., 2012, vol. 40, no. W1, p. W294. https://doi.org/10.1093/nar/gks493

  62. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E., J. Сomput. Chem., 2004, vol. 25, no. 13, p. 1605. https://doi.org/10.1002/jcc.20084

    Article  CAS  Google Scholar 

  63. UCSF Chimera. Visualization system for exploratory research and analysis developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco, US. https://www.rbvi.ucsf.edu/chimera/

  64. Gorobets, N.Y., Yousefi, B.H., Belaj, F., and Kappe, C.O., Tetrahedron, 2004, vol. 60, no. 39, p. 8633. https://doi.org/10.1016/j.tet.2004.05.100

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed using the equipment of the “Diagnostics of Structure and Properties of Nanomaterials” Research and Educational Center as well as Ecological and Analytical Center, Kuban State University.

Funding

This study was financially supported by the Russian Foundation for Basic Research and the Administration of Krasnodar Region (project no. 20-43-235002 “r_Nastavnik_Krasnodar”) as well as Ministry of Education and Science of the Russian Federation (topic 0795-2020-0031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Dotsenko.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolganov, A.A., Levchenko, A.G., Dahno, P.G. et al. 7-Aryl-3-(hydroxymethyl)-5-oxo-1,2,3,5-tetrahydro[1,2,4]triazolo[1,5-a]pyridine-6,8-dicarbonitriles: Synthesis and Predicted Biological Activity. Russ J Gen Chem 92, 185–197 (2022). https://doi.org/10.1134/S1070363222020074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222020074

Keywords:

Navigation