Skip to main content
Log in

Potential Transformations of Dissolved Organic Substances and Their Complexes with Metals in Surface Waters under Solar Radiation

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The article summarizes the results of studies on the molecular weight distribution of humic substances and carbohydrates as the most widespread groups of natural organic compounds in surface waters. The research works have been carried out on different types of water bodies (the upper part of the Kanev Reservoir, the Yuzhnyy Bug, the Desna, the Ros’, the Seret, and the Gornyi Tikich rivers, and small water bodies of urbanized territories, in particular, the upper Kitaevskii and Orekhovatskii ponds, the Kiev city). The exclusive chromatography method has been applied to separate the indicated substances into fractions with different molecular weights. It is shown that the transformation of humic substances and the increase in the mass fraction of compounds with a lower molecular weight (≤ 5 and < 1 kDa) takes place in the spring and summer period as a result of direct photolysis under the action of solar radiation. It is most probable that such a transformation of carbohydrates occurs due to the increase in the water temperature and energization of the microbiological activity. However, in summer, the mass fraction of carbohydrates with a lower molecular weight, in particular < 1 kDa, has been low, which is explained by their assimilation by aquatic organisms. At the same time, photochemical degradation of carbohydrates with the participation of humic substances as photosensitizers cannot be excluded. These transformations of both humic substances and carbohydrates affect the ratio of complex metal compounds with these natural organic ligands, with different molecular weights. In the spring and summer period, there is an increase in the share of complexes with a relatively low molecular weight (≤ 5 kDa), which has been established on the example of iron and copper. Thus, the transformations of natural organic compounds in surface waters can affect not only their potential bioavailability but also the bioavailability of metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Notes

  1. The separation of DOM into groups and fractions, using the ion exchange and gel chromatography methods, was performed by Ya.S. Ivanechko.

REFERENCES

  1. Aquatic Ecosystems: Interactivity of Dissolved Organic Matter, Findlay, S.E.G. and Sinsabaugh, R.L., Eds., San Diego: Academic Press, 2003.

  2. Linnik, P.N., Ivanechko, Ya.S., Linnik, R.P., and Zhezherya, V.A., Russ. J. Gen. Chem., 2013, vol. 83, no. 13, p. 2715. https://doi.org/10.1134/S1070363213130185

    Article  CAS  Google Scholar 

  3. Perminova, I.V., Doctoral (Chem.) Dissertation, Moscow, 2000.

  4. Linnik, P.N. and Ivanechko, Ya.S., Hydrobiol. J., 2014, vol. 50, no. 6, p. 87. https://doi.org/10.1615/HydrobJ.v50.i6.100

    Article  Google Scholar 

  5. Linnik, P.N. and Ivanechko, Ya.S., Hydrobiol. J., 2015, vol. 51, no. 2, p. 85. https://doi.org/10.1615/HydrobJ.v51.i2.80

    Article  Google Scholar 

  6. Linnik, P.N. and Nabivanets, B.I., Formy migratsii metallov v presnykh poverkhnostnykh vodakh (Forms of Metals Migration in Fresh Surface Waters), Leningrad: Gidrometeoizdat, 1986.

  7. Moiseenko, T.I., Panicheva, L.P., Dinu, M.I., Kremleva, T.A., and Fefilov, N.N., Vestnik Tyumen. Gos. Un-ta: Khimiya, 2011, no. 5, p. 6.

    Google Scholar 

  8. Stravinskene, E.S., Candidate Sci. (Biol.) Dissertation, Krasnoyarsk, 2012.

  9. Jones, K.D. and Huang, W.-H., J. Hazard. Materials: B, 2003, vol. 103, nos. 1–2, p. 93. https://doi.org/10.1016/s0304-3894(03)00227-9

    Article  CAS  Google Scholar 

  10. Tipping, E., Cation Binding by Humic Substances, Cambridge: Cambridge University Press, 2004.

  11. Linnik, P.N., Zhezherya, V.A., Linnik, R.P., Ignatenko, I.I., and Zubenko, I.B., Russ. J. Gen. Chem., 2015, vol. 85, no. 13, p. 2965. https://doi.org/10.1134/S1070363215130162

    Article  CAS  Google Scholar 

  12. Osadchyy, V., Nabyvanets, B., Linnik, P., Osadcha, N., and Nabyvanets, Yu., Processes Determining Surface Water Chemistry, Switzerland: Springer International Publishing, 2016. https://doi.org/10.1007/978-3-319-42159-9

  13. Humic Substances: Nature’s Most Versatile Materials, Ghabbour, E.A. and Davies, G., Eds., New York: Taylor & Francis, 2003.

  14. Malcolm, R.L., Organic Substances in Soil and Water: Natural Constituents and Their Influence on Contaminant Behaviour, Beck, A.J., Jones, K.C., Hayes, M.H.B., and Mingelgrin, U., Eds., Cambridge: Royal Society of Chemistry, 1993, p. 19.

  15. Polewski, K., Slawinska, D., Slawinski, J., and Pawlak, A., Geoderma, 2005, vol. 126, p. 291. https://doi.org/10.1016/j.geoderma.2004.10.001

    Article  CAS  Google Scholar 

  16. Xue, H. and Sigg, L., Aquatic Geochem., 1999, vol. 5, p. 313. https://doi.org/10.1023/A:1009679819002

    Article  CAS  Google Scholar 

  17. Lipczynska-Kochany, E., Sci. Total Environ., 2018, vols. 640–641, p. 1548. https://doi.org/10.1016/j.scitotenv.2018.05.376

    Article  CAS  PubMed  Google Scholar 

  18. Kulovaara, M., Int. J. Environ. Anal. Chem., 1996, vol. 62, no. 2, p. 85. https://doi.org/10.1080/03067319608027056

    Article  CAS  Google Scholar 

  19. Gubernatorova, T.N. and Dinu, M.I., Vestn. Tyumen. Gos. Univ: Ekologiya i Prirodopol’zovaniye, 2015, vol. 1, no. 2(2), p. 31.

    Google Scholar 

  20. Vidali, R., Remoundaki, E., and Tsezos, M., Aquatic Geochem., 2009, vol. 16, no. 1, p. 207. https://doi.org/10.1007/s10498-009-9080-5

    Article  Google Scholar 

  21. Brinkmann, T., Hörsch, P., Sartorius, D., and Frimmel, F., Environ. Sci. Technol., 2003, vol. 37, p. 419. https://doi.org/10.1021/es0263339

    Article  CAS  Google Scholar 

  22. Anesio, A.M., Granéli, W., Aiken, G.R., Kieber, D.J., and Mopper, K., Appl. Environ. Microbiol., 2005, vol. 71, no. 10, p. 6267. https://doi.org/10.1128/AEM.71.10.6267-6275.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jensen-Korte, U., Anderson, C., and Spiteller, M., Sci. Total Environ., 1987, vol. 62, p. 335. https://doi.org/10.1016/0048-9697(87)90518-3

    Article  CAS  PubMed  Google Scholar 

  24. Pozdnyakov, I.P., Sherin, P.S., Salomatova, V.A., Parkhats, M.V., Grivin, V.P., Dzhagarov, B.M., Bazhin, N.M., and Plyusnin, V.F., Environ. Sci. Pollut. Res., 2018, vol. 25, p. 20320. https://doi.org/10.1007/s11356-017-8580-x

    Article  CAS  Google Scholar 

  25. Linnik, P.M., Hydrobiol. J., 2020, vol. 56, no. 5, p. 92. https://doi.org/10.1615/HydrobJ.v56.i5.100

    Article  Google Scholar 

  26. Grzybowski, W., Photochem. Photobiol. Sci., 2009, vol. 8, p. 1361. https://doi.org/10.1039/b9pp00038k

    Article  CAS  PubMed  Google Scholar 

  27. Alekseev, Yu.E., Garnovskii, A.D., and Zhdanov, Yu.A., Russ. Chem. Rev., 1998, vol. 67, no. 8, p. 649. https://doi.org/10.1070/RC1998v067n08ABEH000343

    Article  Google Scholar 

  28. Lombardi, A.T. and Vieira, A.A.H., Phycologia, 1998, vol. 37, no. 1, p. 34. https://doi.org/10.2216/i0031-8884-37-1-34.1

    Article  Google Scholar 

  29. Gouvêa, S.P., Vieira, A.A.H., and Lombardi, A.T., Chemosphere, 2005, vol. 60, p. 1332. https://doi.org/10.1016/j.chemosphere.2005.01.061

    Article  CAS  PubMed  Google Scholar 

  30. Lombardi, A.T. and Vieira, A.A.H., Phycologia, 2000, vol. 39, no. 2, p. 118. https://doi.org/10.2216/i0031-8884-39-2-118.1

    Article  Google Scholar 

  31. Tonietto, A.E., Oliveira, N.L., Lombardi, A.T., and Polpo, A., Water Sci. Technol., 2016, vol. 73, no. 10, p. 2544. https://doi.org/10.2166/wst.2016.111

    Article  CAS  PubMed  Google Scholar 

  32. Ukraine Patent 75995, 2012, Byul. Izobret., 2012, no. 24.

  33. Rukovodstvo po khimicheskomu analizu poverkhnostnykh vod sushi (Guide to Chemical Analysis of Terrestrial Surface Waters), Semenov, A.D., Ed., Leningrad: Gidrometeoizdat, 1977.

  34. Linnik, P.N., Anal. Bioanal. Chem., 2003, vol. 376, no. 3, pp. 405–412. https://doi.org/10.1007/s00216-003-1882-5

    Article  CAS  PubMed  Google Scholar 

  35. Nabivanets, B.I., Osadchyy, V.I., Osadcha, N.M., and Nabivanets, Yu.B., Аnalitychna khimiya poverkhnevykh vod (Analytical Chemistry of Surface Waters), Kyiv: Nauk. Dumka, 2007.

  36. Linnik, P.N., Ivanechko, Ya.S., Linnik, R.P., and Zhezherya, V.A., Hydrobiol. J., 2013, vol. 49, no. 5, p. 90. https://doi.org/10.1615/HydrobJ.v49.i5.100

    Article  CAS  Google Scholar 

  37. Linnik, P.M., Zhezherya, V.A., and Linnik, R.P., Problemy gidrologii, gidrokhimii, i gidroekologii (Problems of Hydrology, Hydrochemistry, and Hydroecology), Kyiv: Nika-Tsentr, 2019, p. 168.

  38. Perminova, I.V., Frimmel, F.H., Kudryavtsev, A.V., Kulikova, N.A., Abbt-Braun, G., Hesse, S., and Petrosyan, V.S., Environ. Sci. Technol., 2003, vol. 37, no. 11, p. 2477. https://doi.org/10.1021/es0258069

    Article  CAS  PubMed  Google Scholar 

  39. Shinozuka, T., Shibata, M., and Yamaguchi, T., J. Mass Spectrometry Soc. Japan, 2004, vol. 52, no. 1, p. 29. https://doi.org/10.5702/massspec.52.29

    Article  CAS  Google Scholar 

  40. Song, J., Huang, W., Peng, P., Xiao, B., and Ma, Y., Soil Sci. Soc. Am. J., 2010, vol. 74, no. 6, p. 2013. https://doi.org/10.2136/sssaj2010.0011

    Article  CAS  Google Scholar 

  41. Chin, Y.-P., Aiken, G., and O’Loughlin, E., Environ. Sci. Technol., 1994, vol. 28, no. 11, p. 1853. https://doi.org/10.1021/es00060a015

    Article  CAS  PubMed  Google Scholar 

  42. Shiller, A.M., Duan, S., van Erp, P., and Bianchi, T.S., Limnol. Oceanogr., 2006, vol. 51, no. 4, p. 1716. https://doi.org/10.4319/lo.2006.51.4.1716

    Article  CAS  Google Scholar 

  43. Zepp, R.G., Erickson III, D.J., Paul, N.D., and Sulzberger, B., Photochem. Photobiol. Sci., 2011, vol. 10, no. 2, p. 261. https://doi.org/10.1039/c0pp90037k

    Article  CAS  PubMed  Google Scholar 

  44. Worms, I.A.M., Adenmatten, D., Miéville, P., Traber, J., and Slaveykova, V.I., Chemosphere, 2015, vol. 138, p. 908. https://doi.org/10.1016/j.chemosphere.2014.10.093

    Article  CAS  PubMed  Google Scholar 

  45. Drozdova, O.Y., Aleshina, A.R., Tikhonov, V.V., Lapitskii, S.A., and Pokrovskii, O.S., Chemosphere, 2020, vol. 250, article number 126216. https://doi.org/10.1016/j.chemosphere.2020.126216

  46. Sirenko, L.A. and Kozitskaya, V.N., Biologicheski aktivnye veshchestva vodoroslei i kachestvo vody (Biologically Active Substances of Algae and Water Quality), Kiev: Naukova Dumka, 1988.

  47. Chróst, R.J., Münster, U., Rai, H., Albrecht, D., Witzel, P.K., and Overbeck, J., J. Plankton Res., 1989, vol. 11, no. 2, p. 223. https://doi.org/10.1093/plankt/11.2.223

    Article  Google Scholar 

  48. Myklestad, S.M., Sci. Total Environ., 1995, vol. 165, nos. 1–3, p. 155. https://doi.org/10.1016/0048-9697(95)04549-g

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. N. Linnik or R. P. Linnik.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linnik, P.N., Zhezherya, V.A. & Linnik, R.P. Potential Transformations of Dissolved Organic Substances and Their Complexes with Metals in Surface Waters under Solar Radiation. Russ J Gen Chem 91, 2931–2942 (2021). https://doi.org/10.1134/S1070363221130223

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221130223

Keywords:

Navigation