Skip to main content
Log in

Vanillinato-Substituted Monospirocyclotriphosphazenes: Synthesis, Spectroscopic and Crystallographic Characterizations, and Thermal Properties

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The reactions of one equimolar amount of monospirocyclotriphosphazenes bearing 2,2′-dioxybiphenyl with one, two, three and four equimolar amounts of potassium vanillinate were used to produce the vanillinato-substituted monospirocyclotriphosphazenes. The structures of new phosphazene derivatives were characterized by means of elemental analysis, IR and NMR (1H, 13C, and 31P) spectroscopic techniques. The molecular and crystal structures of mono and tetra vanillinato-substituted monospirocyclotriphosphazenes were examined using X-ray crystallography. The thermal degradation properties of all new compounds were determined using thermal gravimetric analysis (TGA) techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Stewart, F.F., Organophosphorus Chemistry, Cambridge, UK: Royal Society of Chemistry, 2015, p. 397. https://doi.org/10.1039/9781782622765-00397

  2. Okumuş, A., Bilge, S., Kılıç, Z., Öztürk, A., Hökelek, T., and Yılmaz, F., Spectrochim. Acta, Part A, 2010, vol. 76, p. 401. https://doi.org/10.1016/j.saa.2010.04.007

  3. İlter, E.E., Çaylak, N., Işıklan, M., Asmafiliz, N., Kılıç, Z., and Hökelek, T., J. Mol. Struct., 2004, vol. 697, p. 119. https://doi.org/10.1016/j.molstruc.2004.03.043

  4. Allen, C.W., Chem. Rev., 1991, vol. 91, p. 119. https://doi.org/10.1021/cr00002a002

  5. Asmafiliz, N., İlter, E.E., Kılıç, Z., Hökelek, T., and Şahin, E., J. Chem. Sci., 2008, vol. 120, p. 363. https://doi.org/10.1007/s12039-008-0060-x

    Article  CAS  Google Scholar 

  6. Huang, W.K., Yeh, J.T., Chen, K.J., and Chen, K.N., J. Appl. Polym. Sci., 2001, vol. 79, p. 662. https://doi.org/10.1002/1097-4628(20010124)79:4<662::AID-APP100>3.0.CO;2-T

  7. Bolink, H.J., Barea, E., Costa, R.D., Coronado, E., Sudhakar, S., Zhen, C., and Sellinger, A., Org. Electron., 2008, vol. 9, p. 155. https://doi.org/10.1016/j.orgel.2007.10.005

  8. Moriya, K., Suzuki, T., Yano, S., and Miyajima, S., J. Phys. Chem. B, 2001, vol. 105, p. 7920. https://doi.org/10.1021/jp004299j

  9. Harrup, M.K., Gering, K.L., Rollins, H.W., Sazhin, S.V., Benson, M.T., Jamison, D.K., Michelbacher, C.J., and Luther, T.A., ECS Trans., 2012, vol. 41, p. 13. https://doi.org/10.1149/1.3703065

  10. Allcock, H.R., Curr. Opin. Solid State Mater. Sci., 2006, vol. 10, p. 231. https://doi.org/10.1016/j.cossms.2007.06.001

    Article  CAS  Google Scholar 

  11. Andrianov, A.K., DeCollibus, D.P., Gills, H.A., Kha, H.H., Marin, A., Prausnitz, M.R., Babiuk, L.A., Townsend, H., and Mutwiri, G., Proc. Natl. Acad. Sci., 2009, vol. 106, p. 18936. https://doi.org/10.1073/pnas.0908842106

  12. Shcharbin, D., Dzmitruk, V., Shakhbazau, A., Goncharova, N., Seviaryn, I., Kosmacheva, S., Potapnev, M., Petziawiatr-Werbicka, E., Bryszewka, M., Talabaev, M., Chernov, A., Kulchitsky, V., Caminade, A.-M., and Majoral, J-P., Pharmaceutics, 2011, vol. 3, p. 458. https://doi.org/10.3390/pharmaceutics3030458

  13. Morozowich, N.L., Weikel, A.L., Nichol, J.L., Chen, C., Nair, L.S., Laurencin, C.T., and Allcock, H.R., Macromolecules, 2011, vol. 44, p. 1355. https://doi.org/10.1021/ma1027406

    Article  CAS  Google Scholar 

  14. Caminade, A.M., Chem. Commun., 2017, vol. 53, p. 9830. https://doi.org/10.1039/C7CC04949H

  15. Asmafiliz, N., Kılıç, Z., Hayvalı, Z., Açık, L., Hökelek, T., Dal, H., and Öner, Y., Spectrochim. Acta, Part A, 2012, vol. 86, p. 214. https://doi.org/10.1016/j.saa.2011.10.027

    Article  CAS  Google Scholar 

  16. Elmas, G., Okumuş, A., Koç, L.Y., Soltanzade, H., Kılıç, Z., Hökelek, T., Dal, H., Açık, L., Üstündağ, Z., Dündar, D., and Yavuz, M., Eur. J. Med. Chem., 2014, vol. 87, p. 662. https://doi.org/10.1016/j.ejmech.2014.10.005

    Article  CAS  PubMed  Google Scholar 

  17. Berberoğlu, İ., Asmafiliz, N., Kılıç, Z., Hökelek, T., Koç, L.Y., Açık, L., Türk, M., Soltanzade, H., and Dal, H., Inorg. Chim. Acta, 2016, vol. 446, p. 75. https://doi.org/10.1016/j.ica.2016.02.060

    Article  CAS  Google Scholar 

  18. Asmafiliz, N., Civan, M., Uzunalioğlu, N., Özben, A., Kiliç, Z., Kayalak, H., Açik, L., and Hökelek, T., J. Chem. Sci., 2018, vol. 130, p. 152. https://doi.org/10.1002/aoc.4223

    Article  CAS  Google Scholar 

  19. Tümer, Y., Asmafiliz, N., Zeyrek, T., Kılıç, Z., Açık, L., Çelik, S.P., Türk, M., Tunalı, B. Ç., Ünver, H., and Hökelek, T., New J. Chem., 2018, vol. 42, p. 1740. https://doi.org/10.1039/C7NJ03643D

    Article  Google Scholar 

  20. Asmafiliz, N., Berberoğlu, İ., Özgür, M., Kılıç, Z., Kayalak, H., Açık, L., Türk, M., and Hökelek, T., Inorg. Chim. Acta, 2019, vol. 495, p. 118949. https://doi.org/10.1016/j.ica.2019.05.048

    Article  CAS  Google Scholar 

  21. Uslu, A., and Yeşilot, S., Coord. Chem. Rev., 2015, vol. 291, p. 28. https://doi.org/10.1016/j.ccr.2015.01.012

    Article  CAS  Google Scholar 

  22. Chandrasekhar, V., Pandian, B.M., and Azhakar, R., Polyhedron, 2008, vol. 27, p. 255. https://doi.org/10.1016/j.poly.2007.09.026

    Article  CAS  Google Scholar 

  23. Maturana, R.G., Valenzuela, M.L., Schott, E., and Rojas-Poblete, M., Phys. Chem. Chem. Phys., 2017, vol. 19, p. 31479. https://doi.org/10.1039/C7CP06064E

    Article  Google Scholar 

  24. Ainscough, E.W., Brodie, A.M., Chaplin, A.B., Derwahl, A., Harrison, J.A., and Otter, C.A., Analogues Inorg. Chem., 2007, vol. 46, p. 2575. https://doi.org/10.1021/ic062141t

    Article  CAS  PubMed  Google Scholar 

  25. Çil, E., and Arslan, M., Inorg. Chim. Acta, 2009, vol. 362, p. 1421. https://doi.org/10.1016/j.ica.2008.06.030

    Article  CAS  Google Scholar 

  26. Ainscough, E.W., Brodie, A.M., Edwards, P.J.B., Jameson, G.B., Otter, C.A., and Kirk, S., Inorg. Chem., 2012, vol. 51, p. 10884. https://doi.org/10.1021/ic3013574

    Article  CAS  PubMed  Google Scholar 

  27. Koran, K., Özen, F., Biryan, F., and Görgülü, A.O., J. Mol. Struct., 2016, vol. 1105, p. 135. https://doi.org/10.1016/j.molstruc.2015.10.048

    Article  CAS  Google Scholar 

  28. Şenkuytu, E., CBU J. Sci., 2018, vol. 14, p. 209. https://doi.org/10.18466/cbayarfbe.399162

    Article  CAS  Google Scholar 

  29. Asmafiliz, N., Kılıç, Z., Öztürk, A., Süzen, Y., Hökelek, T., Açık, L., Çelik, Z.B., Koç, L. Y., Yola, M.L., and Üstündağ, Z., Phosphorus, Sulfur, Silicon Relat. Elem., 2013, vol. 188, p. 1723. https://doi.org/10.1080/10426507.2013.779273

    Article  CAS  Google Scholar 

  30. Tümer, Y., Koç, L.Y., Asmafiliz, N., Kılıç, Z., Hökelek, T., Soltanzade, H., Açık, L., Yola, M.L., and Solak, A.O., J. Biol. Inorg. Chem., 2015, vol. 20, p. 165. https://doi.org/10.1007/s00775-014-1223-5

    Article  CAS  PubMed  Google Scholar 

  31. Tümer, Y., Asmafiliz, N., Arslan, G., Kılıç, Z., and Hökelek, T., J. Mol. Struct., 2019, vol. 1181, p. 235. https://doi.org/10.1016/j.molstruc.2018.12.090

    Article  CAS  Google Scholar 

  32. Cremer, D. and Pople, J.A., J. Am. Chem. Soc., 1975, vol. 97, p. 1354. https://doi.org/10.1021/ja00839a011

  33. Pidcock, E., Chem. Commun., 2005, vol. 27, p. 3457. https://doi.org/10.1039/B505236J

    Article  Google Scholar 

  34. Tümer, Y., Asmafiliz, N., Kılıç, Z., Aydın, B., Açık, L., and Hökelek, T., J. Mol. Struct., 2018, vol. 1173, p. 885. https://doi.org/10.1016/j.molstruc.2018.07.050

  35. Bullen, G., J. Chem. Soc. A, 1971, vol. 56, p. 1450.

  36. Levchik, S.V., Camıno, G., Luda, M.P., Costra, L., Lindsay, A., and Stevenson, D., J. Appl. Polym. Sci., 1998, vol. 67, p. 461. https://doi.org/10.1002/(SICI)1097-4628(19980118)67:3<461::AID-APP9>3.0.CO;2-K

  37. Akbaş, H., Okumuş, A., Karadağ, A., Kılıç, Z., Hökelek, T., Koç, L.Y., Açik, L., Aydin, B., and Türk, M., J. Therm. Anal. Calorim., 2015, vol. 123, p. 1627. https://doi.org/10.1007/s10973-015-5001-6

    Article  CAS  Google Scholar 

  38. Okumuş, A., Akbaş, H., Karadağ, A., Aydın, A., Kılıç, Z., and Hökelek, T., ChemistrySelect, 2017, vol. 2, p. 4988. https://doi.org/10.1002/slct.201700497

    Article  CAS  Google Scholar 

  39. Tümer, Y., Batı, H., Çalışkan, N., Yüksektepe, Ç., and Büyükgüngör, O., Z. Anorg. Allg. Chem., 2008, vol. 634, p. 597. https://doi.org/10.1002/zaac.200700389

    Article  CAS  Google Scholar 

  40. Bruker Program 1D WIN-NMR (Release 6.0) and 2D WIN-NMR (Release 6.1)

  41. Bruker 2005 SADABS Bruker AXS Inc. Madison Wisconsin USA

  42. Sheldrick, G.M., Acta Crystallogr., Sect A, 2008, vol. 64, p. 112. https://doi.org/10.1107/S0108767307043930

    Article  CAS  PubMed  Google Scholar 

  43. Farrugia, L.J., J. Appl. Crystallogr., 1997, vol. 30, p. 565. https://doi.org/10.1107/S0021889897003117

    Article  CAS  Google Scholar 

  44. Allcock, H.R., Stein, M.T., and Stanko, J.A., J. Am. Chem. Soc., 1971, vol. 93, p. 3173.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by “Karabük University-BAP” Grant no. KBÜBAP-17-YL-440.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Tümer.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tümer, Y., Özdemir, S.Z. Vanillinato-Substituted Monospirocyclotriphosphazenes: Synthesis, Spectroscopic and Crystallographic Characterizations, and Thermal Properties. Russ J Gen Chem 91, 2554–2563 (2021). https://doi.org/10.1134/S1070363221120276

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221120276

Keywords:

Navigation