Skip to main content
Log in

Synthesis, Crystal Structure, and DFT Study of a New Derivative of Pyrido[2,3-d]pyrimidine

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

N-{4-[(6-bromopyrido[2,3-d]pyrimidin-4-yl)oxy]phenyl}morpholine-4-carboxamide has been synthesized as a derivative of pyrido[2,3-d]pyrimidine that demonstrates antitumor, antibacterial, anti-inflammatory, and antimicrobial activities. Synthesis of the target compound based on 2-aminonicotinic acid as the starting material has included its esterification, bromination, cyclization, and substitution reactions. Structure of the product is confirmed by 1H and 13C NMR, FT-IR, and single-crystal X-ray diffraction (XRD). The optimized structure, electrostatic potential and frontier molecular orbitals (FMO) of the compound have been approached by DFT calculations. The compound demonstrates antiproliferative activity on A375 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Fares, M., Hadi, S.R.A.E., Eladwy R.A., Shoun, A.A., Abdel-Aziz, M.M., Eldehna, W.M., Abdel-Aziz, and Keller, H.A.P.A., Org. Biomol. Chem., 2018, vol. 16, p. 3389. https://doi.org/10.1039/c8ob00627j

  2. Ribble, W., Hill, W.E., Ochsner, U.A., Jarvis, T.C., Guiles, J.W., Janjic, N., and Bullard, J.M., Antimicrob. Agent. Chemother., 2010, vol. 54, p. 4648. https://doi.org/10.1128/aac.00638-10

  3. Rajesh, S.M., Kumar, R.S., Libertsen, L.A., Perumal, S., Yogeeswari, P., and Sriram, D., Bioorg. Med. Chem. Lett., 2011, vol. 21, p. 3012. https://doi.org/10.1016/j.bmcl.2011.03.045

  4. Mohamed, N.R., Abdelhalim, M.M., Khadrawy, Y.A., and Elmegeed, G.A., Steroids., 2012, vol. 77, p. 1469. https://doi.org/10.1016/j.steroids.2012.09.001

  5. Nam, G., Yoon, C.M., Kim, E., Rhee, C.K., Kim, J.H., Shin, J.H., and Kim, S.H., Bioorg. Med. Chem. Lett., 2001, vol. 11, p. 611. https://doi.org/10.1016/s0960-894x(00)00681-8

  6. Nakayama, K., Kawato, H., Watanabe, J., Ohtsuka, M., Yoshida, K., Yokomizo, Y., Sakamoto, A., Kuru, N., Ohta, T., Hoshino, K., Yoshida, K., Ishida, H., Cho, A., Palme, M.H., Zhang, J.Z., Lee, V.J., and Watkins, W.J., Bioorg. Med. Chem. Lett., 2004, vol. 14, p. 475. https://doi.org/10.1016/j.bmcl.2003.10.060

  7. Farghaly, T.A. and Hassaneen, H.M.E., Arch. Pharm. Res., 2013, vol. 36, p. 564. https://doi.org/10.1007/s12272-013-0045-2

  8. Quintela, J.M., Peinador, C., Botana, L., Estévez, M., and Riguera, R., Bioorg. Med. Chem., 1997, vol. 5, p. 1543. https://doi.org/10.1016/s0968-0896(97)00108-9

  9. El-Subbagh, H.I., Abu-Zaid, S.M., Mahran, M.A., Badria, F.A., and Al-Obaid, A.M., J. Med. Chem., 2000, vol. 43, p. 2915. https://doi.org/10.1021/jm000038m

    Article  CAS  PubMed  Google Scholar 

  10. Bennett, L.R., Blankley, C.J., Fleming, R.W., Smith, R.D., and Tessman, D.K., J. Med. Chem., 1981, vol. 24, p. 382. https://doi.org/10.1021/jm00136a006

  11. Gfesser, G.A., Bayburt, E.K., Cowart, M., DiDomenico, S., Gomtsyan, A., Lee, C.H., Stewart, A.O., Jarvis, M.F., Kowaluk, E.A., and Bhagwat, S.S., Eur. J. Med. Chem., 2003, vol. 38, p. 245. https://doi.org/10.1016/s0223-5234(03)00019-9

  12. Chen, D., Chen, Y., Yang, D., Zheng, Z., and Zhou, Z., J. Heterocyclic Chem., 2021, vol. 58, p. 1628. https://doi.org/10.1002/jhet.4287

  13. Zhao, J.S., Jin, P., Xi, N., Wei, D.D., Li, J., Wei, D., and Hu, C.H., J. Struct. Chem., 2017, vol. 36, p. 937. https://doi.org/10.14102/j.cnki.0254-5861.2011-1437

  14. Dereli, Ö., Opt. Spectrosc., 2016, vol. 120, p. 690. https://doi.org/10.1134/s0030400x16050222

  15. Brintzinger, H.H., Prosenc, M.H., Schaper, Weeber, F.A., and Wieser, U., J. Mol. Struct., 1999, vol. 485, p. 409. https://doi.org/10.1016/s0022-2860(99)00184-2

  16. Huang, N., Kalyanaraman, C., Bernacki, K., and Jacobson, M.P., Phys. Chem. Chem. Phys., 2006, vol. 8, p. 5166. https://doi.org/10.1039/b608269f

  17. Sheldrick, G.M., Acta Cryst. (A), 2015, vol. 71, p. 3. https://doi.org/10.1107/S2053273314026370

  18. Im, G.-Y.J., Bronner, S.M., Goetz, A.E., Paton, R.S., Cheong, P.H.-Y., Houk, K.N., and Garg, N.K., J. Am. Chem. Soc., 2010, vol. 132, p. 17933. https://doi.org/10.1021/ja1086485

  19. Andersson, M.P. and Uvda, P., J. Phys. Chem., 2005, vol. 109, p. 2937. https://doi.org/10.1021/jp045733a

  20. Krishnakumar, V. and John, X.R., Spectrochim. Acta, Part A, 2006, vol. 63, p. 454. https://doi.org/10.1016/j.saa.2005.05.031

  21. Mague, J.T., Mohamed, S.K., and Akkurt, M., Acta Cryst. (E), 2015, vol. 71, p. o1005. https://doi.org/10.1107/S2056989015022495

  22. Sheldrick, G. M., Acta Cryst. (C), 2015, vol. 71, p. 3. https://doi.org/10.1107/S2053229614024218

  23. Rahmani, R., Boukabcha, N., Chouaih, A., Hamzaoui, F., and Goumri Said, S., J. Mol. Struct., 2018, vol. 1155, p. 484. https://doi.org/10.1016/j.molstruc.2017.11.033

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work has been awarded the Guizhou Provincial Natural Science Foundation ([2020]1Y393).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhixu Zhou or Hongyan Pan.

Ethics declarations

No conflict of interest was declared by the authors.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, L., Sun, H., Hu, W. et al. Synthesis, Crystal Structure, and DFT Study of a New Derivative of Pyrido[2,3-d]pyrimidine. Russ J Gen Chem 91, 2489–2496 (2021). https://doi.org/10.1134/S1070363221120197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221120197

Keywords:

Navigation